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THE SIZE OF THE RISK SET UNDER RANDOM TRUNCATION

SUMMARY

Let U∗ and V ∗ be two independent positive random variables with continuous dis-

tribution functions F and G. Let (af , ag) and (bf , bg) denote the lower and upper

boundaries of (U∗, V ∗), respectively. Under left truncation, both U∗ and V ∗ are

observable only when U∗ ≥ V ∗. Let (U1, V1), . . . , (Un, Vn) denote the truncated sam-

ple. Let NF (u) =
∑n

i=1 I[Ui≤u], NG(v) =
∑n

i=1 I[Vi≤v], and the size of the risk set

Rn(u) = NG(u) − NF (u−) =
∑n

i=1 I[Vi≤u≤Ui], where I[A] is the indicator function of

the event A. The nonparametric maximum likelihood estimate (NPMLE) of F (x)

and G(x) are given by

F̂n(x) = 1 −
∏
u≤x

[
1 − dNF (u)

Rn(u)

]
,

and

Ĝn(x) =
∏
v>x

[
1 − dNG(v)

Rn(v)

]
,

where dNF (u) = NF (u) − NF (u−) and dNG(v) = NG(v) − NG(v−). Let K =

{(F, G) : F (0) = G(0) = 0, α(F, G) > 0}, where α(F, G) =
∫ ∞
0

G(z)dF (z) =
∫ ∞
0

[1 −
F (z)]dG(z). When (F, G) ∈ K and af ≥ ag, bf ≥ bg, the consistency results for the

estimate F̂n and Ĝn were proved by Woodroofe (1985). Let U(1) < U(2) < · · · < U(n)

denote the distinct ordered statistics of the sample U ′
is. In applying F̂n(x), a practical

difficulty arises when Rn(U(i)) = 1 for some i ≤ n−1. Woodroofe (1985, Corollary 5)

showed that when (F, G) ∈ K, the probability P (Rn(U(i))) = 1 for some i ≤ n−1 con-

verges to 0 as n → ∞. In this note, we derive the exact probability of P (Rn(U(1)) = k)

for k = 1, . . . , n and give an alternative proof of limn→∞ P (Rn(U(1)) = k) = 0 for

1 ≤ k < ∞. Simulation results indicate that the probability P (Rn(U(1)) = 1) can be

significant when af − ag is not sufficiently large.

Key words: risk set;truncated data.
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CHAPTER 1. INTRODUCTION

Let U∗ and V ∗ be two independent positive random variables with continuous

distribution functions F and G. Let (af , ag) and (bf , bg) denote the lower and upper

boundaries of (U∗, V ∗), respectively. Under left truncation, both U∗ and V ∗ are

observable only when U∗ ≥ V ∗. Truncated data occur in astronomy,(e.g., Lynden-

Bell (1971), Woodroofe (1985)), epidemiology, biometry (e.g., Wang, Jewell and Tsai

(1986), Tsai, Jewell and Wang (1987)) and possibly in other field such as economics.

The follwing examples describes situtations where the models of left truncation are

appropriate.

Example 1 (retirement data):

Channing House is a retirement center located in Palo Alto, California. Data on ages

at death of 462 individuals (97 males and 365 females), who were in residence during

the period January 1964 to July 1975, has been reported by Hyde (1980). The life

lengths in this data set are left-truncated because an individual must survive to a

sufficient age to enter the retirement community. The truncation variable V ∗, is then

the potential patient’s age at entry, and the target variable U∗, is the patient’s age

at death. Obviously we can only observe (U∗, V ∗) if U∗ ≥ V ∗.

Example 2 (AIDS blood-transfusion data):

The blood transfusion related AIDS data given by Kalbfleisch and Lawless (1989).

They gives infection times V ∗, in months with 1 representing January 1978, incubation

times T in months, and age in years for 34 ‘children’ aged 0 to 4 years, 120 ‘adults’ aged

5 to 59 years, and 141 ‘elderly’ aged 60 and over, who were infected by contaminated

blood transfusions and developed AIDS by 1 July 1986. Let U∗ = 102 − T . The

truncation effect comes from the fact that we only observed over the period (0, 102].

An individual is observed if and only if T + V ∗ ≤ 102 or V ∗ ≤ U∗.

Let (U1, V1), . . . , (Un, Vn) denote the truncated sample. Define

NF (u) =
∑n

i=1 I[Ui≤u], NG(v) =
∑n

i=1 I[Vi≤v], and the size of the risk set Rn(u) =
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NG(u) − NF (u−) =
∑n

i=1 I[Vi≤u≤Ui], where I[A] is the indicator function of the event

A. The nonparametric maximum likelihood estimate (NPMLE) of F (x) and G(x)

(see Wang (1987)) are given by

F̂n(x) = 1 −
∏
u≤x

[
1 − dNF (u)

Rn(u)

]
,

and

Ĝn(x) =
∏
v>x

[
1 − dNG(v)

Rn(v)

]
,

where dNF (u) = NF (u) − NF (u−) and dNG(v) = NG(v) − NG(v−). Let K =

{(F, G) : F (0) = G(0) = 0, α(F, G) > 0}, where α(F, G) =
∫ ∞
0

G(z)dF (z) =∫ ∞
0

[1 − F (z)]dG(z). The justifications of using F̂n(x) and Ĝn(x) are given as fol-

lows,

F ∗(x) = P (Ui ≤ x) = P (U∗ ≤ x|U∗ ≥ V ∗) = P (V ∗ ≤ U∗ ≤ x)/α(F, G) =∫ x

0
G(u)dF (u) = G(x)dF (x)/α(F, G)

R(x) = P (Vi ≤ x ≤ Ui) = P (V ∗ ≤ x ≤ U∗|U∗ ≥ V ∗) = [α(F, G)]−1G(x)[1−F (x)]

Hence,dF ∗(X)
Rn(X)

= dF (x)
1−F (x)

= dΛ(x) ,where Λ(x) =
∫ x

0
dF (u)

1−F (u)

Note that

1 − F (x) =
∏
u≤x

[
1 − dΛ(u)

]

=
∏
u≤x

[
1 − dF (u)

1 − F (u−)

]
=

∏
u≤x

[
1 − dF ∗(u)

R(u)

]

Now dF ∗(u) can be consistently estimated by dNF (u)
n

= NF (u)−NF (u−)
n

and R(u) can

be consistently estimated by Rn(u)
n

=
∑n

i=1 I[Vi≤u≤Ui]

n
. This justified the use of F̂n(x)

and Ĝn(x).

When (F, G) ∈ K and af ≥ ag bf ≥ bg, the consistency results for the estimate

F̂n and Ĝn were proved by Woodroofe (1985). Let U(1) < U(2) < · · · < U(n) denote
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the distinct ordered statistics of the sample U ′
is. Note that Rn(x)/n is a consistent

estimator of R(x) = [α(F, G)]−1G(x)[1 − F (x)]. The R(x) is not monotone in x

and converge to zero if G(x) → 0 or F (x) → 1. Especially, in applying Fn(x), a

practical difficulty arises when Rn(U(i)) = 1 for some i ≤ n − 1. Since Rn(U(i)) = 1

for some i ≤ n−1, then Fn(U(i)) = 1. This is a disturbing property of the estimators.

Furthermore, even when Rn(U(i)) > 1 for all i ≤ n − 1, F̂n may still be a very poor

estimator (badly biased and large variance) of F for moderate sample sizes because

of the small risk set size Rn(x) for x near ag (see Woodroofe 1985 Lemma 2, and a

simulation study of Lai and Ying (1991, pages 440-441).

Woodroofe (1985, Corollary 5) showed that when (F, G) ∈ K,

(i) P (Rn(U(i)) = 1 for some i ≤ n − 1) converges to 0 as n → ∞ and

(ii) min{Rn(U(i)) : 1 ≤ i ≤ (1−ε)n} → ∞ in probability as n → ∞ for all ε, 0 < ε < 1.

The proof of the second assertion (ii) is given by Woodroofe (1985, page 172). The

proof of the first assertion is only briefly described by Woodroofe (1985). We now

give the detailed proof of the first assertion.

proof of the first assertion:

First, we show that Rn(U(i)) = 1 implies that Rn(V(i+1)) = 1, where V(i+1) denote the

(i + 1)th order statistic of the sample V ′
i s. Note that

n∑
j=1

I[Vj≤U(i)≤Uj ] =

n∑
j=i

I[Ṽ(j)≤U(i)≤U(j)]
, (1.1)

where Ṽ(j) is the concomitant of U(j). Hence, (1.1) = 1 implies that U(i) < Ṽ(j) for

j = i + 1, . . . , n and U(i) > Ṽ(j) for j = 1, . . . , i − 1. Hence, V(i+1) = Ṽ(k) for some

k ∈ {j = i + 1, . . . , n}. Thus, we have

n∑
j=1

I[Ṽ(j)≤V(i+1)≤U(j)]
=

n∑
j=1

I[Ṽ(j)≤Ṽ(k)≤U(j)]

=

i∑
j=1

I[Ṽ(j)≤Ṽ(k)≤U(j)]
+ I[Ṽ(k)≤Ṽ(k)≤U(k)]

= 0 + 1 = 1
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Now, Let Xj = 1/Uj and Yj = 1/Vj. Hence, we have

Rn(U(i)) = Rn(V(i+1)) =

n∑
j=1

I[Vj≤V(i+1)≤Uj ]

=

n∑
j=1

I[ 1
Uj

≤ 1
V(i+1)

≤ 1
Vj

] =

n∑
j=1

I[Xj≤ 1
V(i+1)

≤Yj ]

=
n∑

j=1

I[Xj≤Y(n−i)≤Yj ].

Hence, Rn(U(i)) = 1 for i = 1, . . . , n − 1 is equivalent to Rn(Y(n−i)) = 1 for i =

1, . . . , n − 1. The first assertion then follows from the second assertion by letting

ε = 1/n.

For randomly censored data, Maller and Zhou (1993) gived necessary and sufficient

conditions for the probability that the largest censored data is zero. Note that the

Kaplan-Meier estimator (1958) for the survival function of randomly censored time-

to-event data is improper when the largest observation is censored. In this note,

we derive the exact probability of P (Rn(U(1)) = k) for k = 1, . . . , n. Motivated by

Maller and Zhou (1993) we give an alternative proof of limn→∞ P (Rn(U(1)) = k) = 0

for 1 ≤ k < ∞. Simulation results indicate that the probability P (Rn(U(1)) = 1) can

be significant when af − ag is not sufficiently large.
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CHAPTER 2. THE PROBABILITY P (Rn(U(1)) = k)

The following Lemma dervies the exact probability P (Rn(U(1)) = k)

Lemma 2.1:

For k = 1, . . . , n,

P (Rn(U(1)) = k) =

∫ bf

max{af ,ag}
P (B(x) = k − 1)dFU(1)

(x),

where B(x) is binomial random variable with parameter n− 1 and the probability of

success p(x) = P (Vi < x < Ui)/P (Ui > x) = P (V ∗ < x < U∗)/P (U∗ > x, U∗ > V ∗),

and FU(1)
(x) = P (U(1) ≤ x) = [P (Ui ≤ x)]n = [P (U∗ ≤ x|U∗ ≥ V ∗)]n.

proof:

Let Fu and Gv denote the distribution function of Ui and Vi, respecitvely. That

is, Fu(x) = P (Ui ≤ x) = P (U∗ ≤ x|U∗ ≥ V ∗) and Gv(x) = P (Vi ≤ x) = P (V ∗ ≤
x|U∗ ≥ V ∗) For j = 1, . . . , n, let Dj = {(Ui, Vi) : i = 1, . . . , j − 1, j + 1, . . . , n} denote

the set of the observations when U(j) is deleted from the sample. Given k = 1, . . . , n,

P (Rn(U(1)) = k) =

n∑
j=1

P (Uj < min
s∈Dj

Us, max
s=i1,...,ik−1

Vs < Uj < min
s∈Dj ,s �=i1,...,ik−1,

Vs, for i1, . . . , ik−1 ∈ Dj)

= nP ( max
s=i1,...,ik−1

Vs < U1 < min
s=i1,...,ik−1

Us, U1 < min
s∈D1,s �=i1,...,ik−1,

Vs, for i1, . . . , ik−1 ∈ D1)

= n

(
n − 1

k − 1

) ∫ bf

max{af ,ag}
[P (Vi < x < Ui)]

k−1[P (Vi > x)]n−kdFu(x)

=

∫ bf

max{af ,ag}

(
n − 1

k − 1

)[P (Vi < x < Ui)

P (Ui > x)

]k−1[P (Vi > x)

P (Ui > x)

]n−k

n[P (Ui > x)]n−1dFu(x).

(2.1)

Since P (Vi > x) = P (Ui > Vi > x), we have P (Vi > x)/P (Ui > x) = P (Vi > x|Ui >

x) = 1 − P (Vi < x|Ui > x)
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= 1 − P (Vi < x < Ui)/P (Ui > x). Note that n[P (Ui > x)]n−1dFu(x) = dFU(1)
(x),

where FU(1)
(x) = P (U(1) ≤ x). Hence, (2.1) can be expressed as

∫ bf

max{af ,ag}

(
n − 1

k − 1

)
[p(x)]k−1[1 − p(x)]n−kdFU(1)

(x)

=

∫ bf

max{af ,ag}
P (B(x) = k − 1)dFU(1)

(x).

The proof is completed.

The following Lemma shows that limn→∞ P (Rn(U(1)) = k) = 0 for 1 ≤ k < ∞.

Lemma 2.2:

Suppose that (F, G) ∈ K then limn→∞ P (Rn(U(1)) = k) = 0 for 1 ≤ k < ∞.

proof:

First, we consider the case af > ag and k = 1. Note that af > ag implies that

α(F, G) > 0. From Lemma 2.1, when af > ag, we obtain

P (Rn(U(1)) = 1) = n

∫ bf

af

[P (Vi > x)]n−1dFu(x) ≤ n[P (Vi > af )]n−1.

Since P (Vi > af ) < 1, we have n[P (Vi > af )]n−1 → 0, as n → ∞. the proof is

completed.

Next, we consider the case af ≤ ag.

Define Ũi = bf − Ui and Ṽi = bf − Vi. Let F1 and F2 denote the distribution

function of Ṽi and Ũi. When af ≤ ag, P (Rn(U(1)) = 1) can be written as

P (Rn(U(1)) = 1) = n

∫ bf−ag

0

[F1(x)]n−1dF2(x)◦

Since F1(x) < 1 for x < bf − ag, according to Lemma 2.3 of Maller and Zhou (1993),

lim
n→∞

n

∫ bf−ag

0

[F1(x)]n−1dF2(x) = L if and only if lim
x↑bf−ag

1 − F2(x)

1 − F1(x)
= L.
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This is equivalent to

lim
x↓ag

Fu(x)

Gv(x)
= lim

x↓ag

∫ x

ag
G(z)dF (z)∫ x

ag
G(z)dF (z) + G(x)F̄ (x)

=
1

1 + G(x)F̄ (x)∫ x
ag

G(z)dF (z)

= L.

Note that

G(x)F̄ (x)∫ x

ag
G(z)dF (z)

=
F̄ (x)∫ x

ag

G(z)
G(x)

dF (z)
≥ F̄ (x)∫ x

ag
dF (z)

=
F̄ (x)

F (x) − F (ag)
.

Since limx↓ag F (x) − F (ag) = 0 and limx↓ag F̄ (x) = F̄ (ag) > 0, we have

limx↓ag

Fu(x)
Gv(x)

= 0.

Hence, limn→∞ P (Rn(U(1)) = 1) = 0.

Next, we consider the case k > 1. From Lemma 2.1, we have

P (Rn(U(1)) = k)

= n

(
n − 1

k − 1

) ∫ bf

max{af ,ag}
[P (Vi < x < Ui)]

k−1[P (Vi > x)]n−kdFu(x)

≤ n

(
n − 1

k − 1

) ∫ bf

max{af ,ag}
[1 − Fu(x)]k−1[1 − Gv(x)]n−kdFu(x)

= n

(
n − 1

k − 1

) ∫ bf

max{af ,ag}
[F2(bf − x)]k−1[F1(bf − x)]n−kdF2(bf − x)

= n

(
n − 1

k − 1

) ∫ bf−max{af ,ag}

0

[F2(y)]k−1[F1(y)]n−kdF2(y).

Since F1(x) < 1 for x < bf −max{af , ag}, according to (2.9) and (2.10) of Maller and

Zhou (1993),

lim
n→∞

n

(
n − 1

k − 1

) ∫ bf−max{af ,ag}

0

[F2(y)]k−1[F1(y)]n−kdF2(y) = Lk

if and only if

lim
x↑bf−max{af ,ag}

1 − F2(x)

1 − F1(x)
= L.
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This is equivalent to limx↓max{af ,ag}
Fu(x)
Gv(x)

= L. Similar to the argument for k =

1, we have limx↓max{af ,ag} F (x) − F (max{af , ag}) = 0 and limx↓max{af ,ag} F̄ (x) =

F̄ (max{af , ag}) > 0. The proof is completed.

From Lemma 2.1,

P (Rn(U(1)) = 1) = n

∫ bf

max{af ,ag}
[P (Vi > x)]n−1dFu(x) ≤ n[P (Vi > max{af , ag})]n−1.

Hence, when af > ag and [P (Vi > af)]
n−1 is sufficiently small, the probability

P (Rn(U(1)) = 1) is negligible. However, when af ≤ ag, this probabiltiy can be

signifcant. Similarly, for k > 1,

P (Rn(U(1)) = k) ≤ n

(
n − 1

k − 1

) ∫ bf

max{af ,ag}
[P (Vi > x)]n−kdFu(x)

≤ n

(
n − 1

k − 1

)
[P (Vi > max{af , ag})]n−k.

Hence, for small values of k, when af ≤ ag, this probabiltiy can be signifcant.
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CHAPTER 3. SIMULAITON RESULTS AND DISCUSSION

Next, simulation study was conducted to investigate the probability

P (Rn(U(1)) = 1). The U∗’s are left-truncated Weibull distributed:

U∗ ∼ LW (af , δ), that is F (x) = 1 − e−(x−af )δ
for x ≥ af with varying parameters

af = 0.3(0.3)0.9 and δ = 0.25, 1.0, 4.0. The V ∗’s are uniform distributed: V ∗ ∼
U(ag, δg) with ag = 0.5 and bg = 5.0. Sample sizes are chosen as n = 10, 25 and 50.

The replication is 10000 times. Table 1 lists the probability P (Rn(U(1)) = 1).

Table 1. Simulation results of P (Rn(U(1)) = 1):Vi ∼ U(0.5, 5.0)

n δ af = 0.3 af = 0.6 af = 0.9

10 0.25 0.105 0.248 0.117

25 0.25 0.049 0.141 0.005

50 0.25 0.037 0.050 0.000

10 1.00 0.098 0.071 0.018

25 1.00 0.033 0.014 0.000

50 1.00 0.018 0.002 0.000

10 4.00 0.015 0.002 0.000

25 4.00 0.003 0.000 0.000

50 4.00 0.001 0.000 0.000

Simulation results indicate that when n = 50 or (n = 25 and af − ag = 0.6),

the probability P (Rn(U(1)) = 1) is close to zero. However, when n = 10, af − ag =

−0.2, 0.1 and δ = 0.25, 1, the probability is larger than 0.05. Lai and Ying (1991)

suggest a solution to this problem by a slight modification of the NPMLE F̂n where

deaths are ignored when the risk set is small. Their estimator is given by

F̃n(x) = 1 −
∏
u≤x

[
1 − I[Rn(u)≥cnp]

dNF (u)

Rn(u)

]
,

where c > 0 and 0 < p < 1. This estimator F̃n(u) is asymptotically equivalent to the

NPMLE F̂n. For finite sample, further investigation is needed to compare the two

estimators.
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