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ESTIMATION OF THE TRUNCATION PROBABILITY

IN THE RANDOM TRUNCATION MODEL

ABSTRACT

Under random truncation, a pair of independent random variables U∗ and V ∗ is observable only

if U∗ is larger than V ∗. The resulting model is the conditional probability H(x, y) = P (U∗ ≤

x, V ∗ ≤ y|U∗ ≥ V ∗). For the truncation probability α = P (U∗ ≥ V ∗), a proper estimate is αn =∫
Gn(s)dFn(s), where Fn and Gn are nonparametric maximum likelihood estimate (NPMLE) of the

distributions F and G. He and Yang (1998) showed that αn is equivalent to a simpler representation

α̂n. In this article, using coupled inverse-probability-of-truncation weighted estimators, we propose

an alternative proof of the equivalence. Similarly, for left-truncated and right-censored data, two

estimators (denoted by α̃n and α̂e) are considered. It is shown that the equivalence of α̃n and α̂e

does not hold. Simulation results shows that the mean-squared error of α̃n is smaller than that of

α̂e.

Key Words: Product-limit estimator; Truncation probability.
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1 INTRODUCTION

Let U∗ and V ∗ be the target and truncation variables with distribution functions F and G re-

spectively. Assume that U∗ and V ∗ are independent. For left-truncated data, both U∗ and V ∗

are observable only when U∗ ≥ V ∗. Truncated data occur in astronomy (e.g., Lynden-Bell (1),

Woodroofe (2)), epidemiology, biometry (e.g., Wang, Jewell and Tsai (3), Tsai, Jewell and Wang

(4)) and possibly in other field such as economics. For any distribution function K denote the left and

right endpoints of its support by aK = inf{t : K(t) > 0} and bK = inf{t : K(t) = 1}, respectively.

Woodroofe (2) pointed out that if aG ≤ aF and bG ≤ bF , then both F and G are identifiable. Let

(U1, V1), . . . , (Un, Vn) denote the truncated sample. Hence, H(u, v) = P (Ui ≤ u, Vi ≤ v) = P (U∗ ≤

u, V ∗ ≤ v|U∗ ≥ V ∗). Let I[A] be the indicator function of the event A. Let NF (u) =
∑n

i=1 I[Ui≤u],

NG(v) =
∑n

i=1 I[Vi≤v], and Rn(u) = NG(u)−NF (u−) =
∑n

i=1 I[Vi≤u≤Ui].

Let U(1) < U(2) < · · · < U(r) denote the distinct ordered statistics of the sample U ′
is. Let

di = NF (U(i)) − NF (U(i)−) denote the number of failure times at U(i) for i = 1, . . . , r. Similarly,

let V(1) < V(2) < · · · < V(q) be the distinct order statistics of sample V1, V2, . . . , Vn, and ej =

NG(V(j)) − NG(V(j)−) denote the number of truncation times at V(j). A necessary and sufficient

condition for the existence of the nonparametric maximum likelihood estimate (NPMLE) of F (x)

is Rn(U(i)) > di for i = 1, . . . , r, for the existence of the NPMLE of G(x) is Rn(V(j)) > ej for

j = 1, . . . , q − 1 (see Wang (5)). Under these regularity conditions, the NPMLEs of F (x) and G(x)

are uniquely determined and given by

Fn(x) = 1−
∏
u≤x

[
1− dNF (u)

Rn(u)

]
,

and

Gn(x) =
∏
v>x

[
1− dNG(v)

Rn(v)

]
,

where dNF (u) = NF (u)−NF (u−) and dNG(v) = NG(v)−NG(v−).

For the truncation probability α = P (U∗ ≥ V ∗), a proper estimate is αn =
∫

Gn(s)dFn(s). Since Fn

and Gn have complicated product-limit forms, it is generally not easy to study the properties of αn.
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Since R(x) = nP (V ∗ ≤ x ≤ U∗|U∗ ≥ V ∗) = nα−1G(x)[1−F (x−)], replacing G, F and R by Gn, Fn

and Rn yields another estimate α̂n(x) = nGn(x)[1− Fn(x−)]/Rn(x) for all x such that Rn(x) > 0.

He and Yang (6) showed that αn is equivalent to a α̂n(x) for all x such that Rn(x) > 0. In Section 2,

using coupled inverse-probability-of-truncation weighted estimators, we give an alternative proof of

equivalence. In Section 3, two estimators (denoted by α̃n and α̂e) are considered for left-truncated

and right-censored data. It is shown that the equivalence of α̃n and α̂e does not hold. In Section 4,

a simulation study is conducted to examine the performance of α̃n and α̂e
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2 EQUIVALENCE OF αn and α̂n(x)

First, we consider an inverse-probability-of-truncation weighted estimator of F (x) and G(x) (see

Robins and Rotnitzky (7); Satten and Datta (8); Shen (9)). We simultaneously estimate F (x) and

G(x) using coupled inverse-probability-of-truncation weighted estimators. Let F̂c(x) and Ĝc(x) be

given by

F̂c(x) =

[
n∑

i=1

1/Ĝc(Ui)

]−1 n∑
i=1

I[Ui≤x]

Ĝc(Ui)
,

and

Ĝc(x) =

[
n∑

i=1

1/[1− F̂c(Vi−)]

]−1 n∑
i=1

I[Vi≤x]

[1− F̂c(Vi−)]
.

Shen (9) shows that F̂c and Ĝc are equivalent to Fn and Gn, respectively. Based on F̂c and Ĝc, the

following theorem shows that αn and α̂n(x) are equivalent.

Lemma 2.1.

Suppose that Rn(U(i)) > 0 and Rn(V(k)) > 0 for i = 1 . . . , r and k = 1, . . . , q. Then αn = α̂n(x)

for all x ∈ [V(1), U(r)].

Proof:

First,

αn =
∫

Gn(x)dFn(x) =
r∑

j=1

Gn(U(j))[Fn(U(j))− Fn(U(j−1))]

=
r∑

j=1

Ĝc(U(j))[F̂c(U(j))− F̂c(U(j−1))] =
r∑

j=1

Ĝc(U(j))dj

Ĝc(U(j))[
∑r

j=1 dj/Ĝc(U(j))]

=
n∑r

j=1 dj/Ĝc(U(j))
. (2.1)

Since F̂c(U(i))− F̂c(U(i−1)) = Fn(U(i))− Fn(U(i−1)), we have

di

Ĝc(U(i))[
∑r

j=1 dj/Ĝc(U(j))]
=

di[1− Fn(U(i−1))]
Rn(U(i))

.

Hence,

αn =
n∑r

j=1 dj/Ĝc(U(j))
= nGn(U(i))[1− Fn(U(i−1))]/Rn(U(i))
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= nGn(U(i))[1− Fn(U(i)−)]/Rn(U(i)) = α̂n(U(i)).

Similarly,

αn =
∫

[1− Fn(x−)]dGn(x) =
q∑

j=1

[1− Fn(V(j)−)][Gn(V(j))−Gn(V(j−1))]

=
q∑

j=1

[1− F̂c(V(j)−)][Ĝc(V(j))− Ĝc(V(j−1))]

=
q∑

j=1

[1− F̂c(V(j)−)]ej[
1− F̂c(V(j)−)

][∑q
j=1 ej/[1− F̂c(V(j)−)]

] =
n∑q

j=1 ej/[1− F̂c(V(j)−)]
.

Since Ĝc(V(k))− Ĝc(V(k−1)) = Gn(V(k))−Gn(V(k−1)), we have

ek[
1− F̂c(V(k)−)

]
[
∑q

j=1 ej/[1− F̂c(V(j)−)]
=

ekGn(V(k))
Rn(V(k))

.

Hence,

αn =
n∑q

j=1 ej/[1− F̂c(V(j)−)
= nGn(V(k))[1− Fn(V(k)−)]/Rn(V(k)) = α̂n(V(k)). (2.2)

Note that the jumps of α̂n(x) occur at the distinct order statistics U(i)’s and V(k)’s. Since α̂n(U(i)) =

α̂n(V(k)) for i = 1 . . . , r and k = 1, . . . , s, it follows that αn = α̂n(x) for all x ∈ [V(1), U(r)].

Note that by (2.1) and (2.2) in Lemma 2.1 it follows that[
n∑

i=1

1
Ĝc(Ui)

]−1

=

[
n∑

i=1

1
1− F̂c(Vi−)

]−1

.
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3 LEFT-TRUNCATED AND RIGHT-CENSORED DATA

Let (U∗
i , Ci, V

∗
i ) be i.i.d. random vectors such that (Ci, V

∗
i ) is independent of U∗

i . It will be assumed

throughout this section that Ci ≥ V ∗
i . Let F , Q and G denote the common distribution function of

U∗
i , Ci and V ∗

i , respectively. For left-truncated and right-censored data, one can observe nothing if

U∗
i < V ∗

i and observe (X∗
i , δ∗i ), with X∗

i = min(U∗
i , Ci) and δ∗i = I[U∗

i ≤Ci], if U∗
i ≥ V ∗

i . Woodroofe

(2) pointed out that if aG ≤ min(aF , aQ) and bG ≤ min(bF , bQ), then F , Q and G are all identifiable.

Data of this kind often arise in epidemiology and individual follow-up study (see Wang (10)).

Notation

Let (X1, δ1, V1), . . . , (Xn, δn, Vn) denote the left-truncated and right-censored sample.

Let U(1) < U(2) < · · · < U(r) be the distinct ordered failure times and ds be the number of failure

times at U(s) for s = 1, . . . , r.

Similarly, let V(1) < V(2) < · · · < V(q) be the distinct ordered truncation times and et be the number

of truncation times at V(t) for t = 1, . . . , q.

Let C(1) < C(2) < · · · < C(h) be the distinct ordered censoring times and cl be the number of

censoring times at C(l) for l = 1, . . . , h.

For each V(t) (t = 1, . . . , q), let C(1(t)) < C(2(t)) < · · · < C(h(t)) be the distinct ordered censoring

times and cl(t) be the number of censoring times at C(l(t)) for l = 1, . . . , h(t).

Let Q(x|v) = P (C ≤ x|V ∗ = v) denote the conditional distribution function of C given V ∗ = v. Let

α = P (U∗
i ≥ V ∗

i ), dF (x) = F (x)−F (x−), dG(x) = G(x)−G(x−), and dQ(x|v) = Q(x|v)−Q(x−|v).

The likelihood function L can be decomposed into three factors (see Wang (10), Gross and Lai
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(11)), yielding

L =
n∏

i=1

{
dF (Xi)dG(Vi)[1−Q(Xi − |Vi)/α

}δi

×
n∏

i=1

{
dQ(Xi|Vi)dG(Vi)[1− F (Xi)]/α

}1−δi

=

{
n∏

i=1

F (Xi)]δi [1− F (Xi)]1−δi

1− F (Vi−)

}
×

{
q∏

t=1

[
dG(V(t))[1− F (V(t)−)]

α

]et
}

×

{
q∏

t=1

[ ∏
Vi=V(t)

[1−Q(Xi − |V(t))]δi [dQ(Xi|V(t))]1−δi

]}
= L1L2L3,

where L1, L2, and L3 represent the likelihoods in the first, second, and third brace, respectively.

Let R̃n(u) =
∑n

i=1 I[Vi≤u≤Xi] and ÑF (u) =
∑n

i=1 I[Xi≤u,δi=1]. A necessary and sufficient condi-

tion for the existence of the NPMLE of L1 is R̃n(U(s)) > ds = ÑF (U(s))−ÑF (U(s)−) for s = 1, . . . , r

(see Wang (5)). Under this regularity condition, the NPMLE of F (x) from L1 is uniquely determined

and given by

F̃n(x) = 1−
∏
u≤x

[
1− dÑF (u)

R̃n(u)

]
,

where dÑF (u) = ÑF (u)− ÑF (u−).

Based on L2, the NPMLE of G(x) is uniquely determined and given by

G̃n(y) =

[
q∑

t=1

et

1− F̃n(V(t)−)

]−1 q∑
t=1

etI[V(t)≤y]

1− F̃n(V(t)−)
.

Next, let R̃t
n(u) =

∑n
i=1 I[Vi≤u≤Xi,Vi=V(t)] and Ñ t

Q(u) =
∑n

i=1 I[Xi≤u,δi=0,Vi=V(t)]. For each V(t),

a necessary and sufficient condition for the existence of the NPMLE of Q(x|V(t)) is R̃t
n(C(l(t))) >

cl(t) = Ñ t
Q(Cl(t)) − Ñ t

Q(Cl(t)−) for l = 1, . . . , h(t). Under these regularity conditions, the NPMLE

of Q(x|V(t)) from L3 is uniquely determined and given by

Q̃n(x|V(t)) = 1−
∏
u≤x

[
1−

dÑ t
Q(u)

R̃t
n(u)

]
where dÑ t

Q(u) = N t
Q(u)−N t

Q(u−).

When Q̃n(x|V(t)) exists for all V(t)’s, the NPMLE of Q (denoted by Q̃n) can be written as

Q̃n(x) =
q∑

t=1

Q̃n(x|V(t))[G̃n(V(t))− G̃n(V(t−1))].
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Note that when the bivariate distribution of (Ci, V
∗
i ) is continuous, the NPMLE of Q(x|V(t))

does not exist.

Shen (9) considered the inverse-probability-weighted estimators by simultaneously estimating F ,

G and Q. Let F̂e(x), Ĝe(x) and Q̂e(x) be given by

F̂e(x) =

[
n∑

i=1

δi

Ĝe(Xi)− Q̂e(Xi−)

]−1 n∑
i=1

δiI[Xi≤x]

Ĝe(Xi)− Q̂e(Xi−)
, (3.1)

Ĝe(x) =

[
n∑

i=1

1
1− F̂e(Vi−)

]−1 n∑
i=1

I[Vi≤x]

1− F̂e(Vi−)
, (3.2)

and

Q̂e(x) =

[
n∑

i=1

1
1− F̂e(Vi−)

]−1 n∑
i=1

(1− δi)I[Xi≤x]

1− F̂e(Xi−)
. (3.3)

Shen (9) showed the equivalence of F̃n and F̂e, and hence, the equivalence of G̃n and Ĝe. However,

the equivalence of Q̃n and Q̂e does not hold. The justification of using Q̂e is given in Shen (9).

For the truncation probability α = P (U∗ ≥ V ∗), a proper estimate is

α̃n =
∫

G̃n(s)dF̃n(s). Instead, under the assumption (Ci, V
∗
i ) is independent of U∗

i and P (V ∗
i <

Ci) = 1, we have

1
n

R̃(x) = P (Vi ≤ x ≤ Xi) = P (V ∗
i ≤ x ≤ min{U∗

i , Ci}|V ∗
i ≤ U∗

i )

= P (V ∗
i ≤ x, Ci ≥ x)P (U∗

i ≥ x)/α = [P (V ∗
i ≤ x)− P (Ci < x)]P (U∗

i ≥ x)/α

= [G(x)−Q(x−)][1− F (x−)]/α.

For all x such that R̃n(x) > 0, we can obtain an alternative estimator for α as

α̂e(x) = n[Ĝe(x)− Q̂e(x−)][1− F̂e(x−)]/R̃n(x).

To derive the explicit relationship between α̃n and α̂e(x), we consider the estimation of αd = P (V ∗
i ≤

U∗
i ≤ Ci). Note that α = αd + αc, where αc = P (Ci < U∗

i ). Let α̃d =
∫

[G̃n(x) − Q̂e(x−)]dF̃n(x).

For R̃n(x) > 0, let

α̂d(x) = nd[Ĝe(x)−Qe(x−)][1− F̂e(x−)]/R̃n(x),

where nd =
∑s

i=1 ds denotes the number of death.
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Lemma 3.1.

Suppose that R̃n(U(i)) > 0 for i = 1 . . . , r. Then α̃d = α̂d(U(i)) for all i = 1, . . . , r.

Proof:

By (3.1), we have

α̃d =
∫

[G̃n(x)− Q̂e(x−)]dF̃n(x) =
r∑

i=1

[Ĝe(U(i))− Q̂e(U(i)−)][F̂e(U(i))− F̂e(U(i−1))]

=

[
r∑

i=1

di

Ĝe(U(i))− Q̂e(U(i)−)

]−1 r∑
i=1

[Ĝe(U(i))− Q̂e(U(i)−)]
di

[Ĝe(U(i))− Q̂e(U(i)−)]

= nd

[
r∑

i=1

di

Ĝe(U(i))− Q̂e(U(i)−)

]−1

. (3.4)

Since F̂e(U(i))− F̂e(U(i−1)) = F̃n(U(i))− F̃n(U(i−1)), we have[
r∑

i=1

di

Ĝe(U(i))− Q̂e(U(i)−)

]−1
di

[Ĝe(U(i))− Q̂e(U(i)−)]
=

di[1− F̃n(U(i−1))]

R̃n(U(i))
.

Hence, [
r∑

i=1

di

Ĝe(U(i))− Q̂e(U(i)−)

]−1

=
[Ĝe(U(i))− Q̂e(U(i)−)][1− F̂e(U(i−1))]

R̃n(U(i))
.

The proof is completed.

Lemma 3.2.

Suppose that R̃n(U(i)) > 0 for i = 1 . . . , r. Then α̂e(U(i)) = α̂e(U(1)) for i = 2, . . . , r. Proof:

From Lemma 3.1, for i = 1, . . . , r, we have

α̂e(U(i)) =
n

nd
α̂d(U(i)) =

n

nd
α̃d.

The proof is completed.

Lemma 3.3.

[
n∑

i=1

δi

Ĝe(Xi)− Q̂e(Xi−)

]−1

=

[
n∑

i=1

1
1− F̂e(Vi−)

]−1

.
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Proof: By (3.2) and (3.3), we have

α̃d =
∫

(1− F̃n(x−))d[G̃n(x)− Q̃e(x−)] =
∫

[1− F̂e(x−)]d[Ĝe(x)− Q̂e(x−)]

=
∫

[1− F̂e(x−)]dĜe(x)−
∫

[1− F̂e(x−)]dQ̂e(x−)

=

[
n∑

i=1

1
1− F̂e(Vi−)

]−1{ q∑
t=1

[1− F̂e(V(t−1))]
et

1− F̂e(V(t−1))
+

h∑
l=1

[1− F̂e(C(l−1))]
cl

1− F̂e(C(l−1))

}
=

[
n∑

i=1

1
1− F̂e(Vi−)

]−1

[
q∑

t=1

et −
h∑

l=1

cl]

= (n− nc)

[
n∑

i=1

1
1− F̂e(Vi−)

]−1

= nd

[
n∑

i=1

1
1− F̂e(Vi−)

]−1

.

By (3.4),

α̃d = nd

[
r∑

i=1

di

Ĝe(U(i)−)− Q̂e(U(i−1))

]−1

= nd

[
n∑

i=1

δi

Ĝe(Xi)− Q̂e(Xi−)

]−1

.

The proof is completed.

Lemma 3.4.

Suppose that R̃n(U(i)) > 0 and Rn(V(j)) > 0 for i = 1, . . . , r and j = 1, . . . , t. Then α̂e(U(i)) =

α̂e(V(j)) for i = 1, . . . , r and j = 1, . . . , t.

Proof:

Let us denote by V ∗
(1) < V ∗

(2) < · · · < V ∗
(h) the distinct ordered values of Vj in [U(i−1), U(i)], i.e.,

U(i−1) < V ∗
(1) < V ∗

(2) < · · · < V ∗
(m) < U(i).

Let A(x) = Ĝe(x)− Q̂e(x−) and B(x) = [1− F̂e(x−)]/R̃n(x).

For any V ∗
(j) in [U(i−1), U(i)], we have

α̂e(U(i))− α̂e(V ∗
(j)) = nA(U(i))B(U(i))− nA(V ∗

(j))B(V ∗
(j))

= n[A(U(i))−A(V ∗
(j))]B(V ∗

(j)) + nA(U(i))[B(U(i))−B(V ∗
(j))].
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Note that for any Vk in [V ∗
(j), U(i)], 1− F̂e(Vk−) = 1− F̂e(U(i−1)). Similarly, for any Xk in [V ∗

(j), U(i)],

1− F̂e(Xk−) = 1− F̂e(U(i−1)).

Hence, by (3.2) and (3.3), we have

[A(U(i))−A(V ∗
(j))]B(V ∗

(j)) =

[
n∑

i=1

1
1− F̂e(Vi−)

]−1 ∑n
k=1(I[V ∗

(j)<Vk≤U(i)] − I[V ∗
(j)≤Xk<U(i)])

R̃n(V ∗
(j))

.

Note that
n∑

k=1

(
I[V ∗

(j)<Vk≤U(i)] − I[V ∗
(j)≤Xk<U(i)]

)
=

n∑
k=1

(
I[Vk≤U(i)] − I[Xk<U(i)]

)
−

n∑
k=1

(
I[Vk≤V ∗

(j)]
− I[Xk<V ∗

(j)]

)
=

n∑
k=1

I[Vk≤U(i)≤Xk] −
n∑

k=1

I[Vk≤V ∗
(j)≤Uk] = R̃n(U(i))− R̃n(V ∗

(j)).

Hence,

[A(U(i))−A(V ∗
(j))]B(V ∗

(j)) =

[
n∑

i=1

1
1− F̂e(Vi−)

]−1

[R̃n(U(i))− R̃n(V ∗
(j))]/R̃n(V ∗

(j)).

Next,

A(U(i))[B(U(i))−B(V ∗
(j))] = [Ĝe(U(i))− Q̂e(U(i)−)][1− F̂e(U(i−1))]

R̃n(V ∗
(j))− R̃n(U(i))

R̃n(V ∗
(j))R̃n(U(i))

.

Note that

[1− F̂e(U(i−1))]/R̃n(U(i)) = [1− F̃n(U(i−1))]/R̃n(U(i)) = [F̃n(U(i))− F̃n(U(i−1))]/di

= [F̂e(U(i))− F̂e(U(i−1))]/di =

[
n∑

i=1

δi

Ĝe(Xi)− Q̂e(Xi−)

]−1
1

Ĝe(Ui)− Q̂e(Ui−)
.

Hence,

A(U(i))[B(U(i))−B(V ∗
(j))] =

[
n∑

i=1

δi

Ĝe(Xi)− Q̂e(Xi−)

]−1

[R̃n(V ∗
(j))− R̃n(U(i))]/R̃n(V ∗

(j)).

By Lemma 3.3 it follows that

[A(U(i))−A(V ∗
(j))]B(V ∗

(j)) + A(U(i))[B(U(i))−B(V ∗
(j))] = 0.

The proof is completed.

Lemma 3.5.
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Suppose that R̃n(U(i)) > 0 and Rn(C(l)) > 0 for i = 1, . . . , r and l = 1, . . . , h. Then α̂e(U(i)) =

α̂e(C(l)) for i = 1, . . . , r and l = 1, . . . , h.

Proof:

The proof is similar to that of Lemma 3.4 and is omitted.

Lemma 3.6.

Suppose that Rn(U(i)) > 0, Rn(V(t)) > 0 and Rn(C(l)) > 0 for i = 1 . . . , r, and t = 1, . . . , q and

l = 1, . . . , h. Then α̂e(x) is constant for all x ∈ [V(1), U(r)].

Proof:

Note that the jumps of α̂e(x) occur at the distinct order statistics U(i)’s, V(t)’s and C(l)’s. By Lemma

3.2, 3.4 and 3.5, α̂e(U(i)) = α̂e(V(t)) = αe(C(l)) for i = 1, . . . , r, t = 1, . . . , q and all C(l) ≤ U(r), it

follows that α̂e(x) is constant for any x ∈ [V(1), U(r)].

Lemma 3.7.

Suppose that R̃n(U(i)) > 0 for i = 1 . . . , r. Then for all i = 1 . . . , r.

α̃n = α̂e(U(i))

[
nd

n
+

1
n

( r∑
i=1

diĜe(U(i))

Ĝe(U(i))− Q̂e(U(i)−)
− nd

)]
.

Proof:

α̃n =
∫

Ĝn(x)dF̂n(x) =
∫

Ĝe(x)dF̂e(x) =
∫

[Ĝe(x)− Q̂e(x−)]dF̂e(x) +
∫

Q̂e(x−)dF̂e(x)

= α̂d(U(i)) +

[
r∑

i=1

di

Ĝe(U(i))− Q̂e(U(i)−)

]−1 r∑
i=1

diQ̂e(U(i)−)

Ĝe(U(i))− Q̂e(U(i)−)

=
nd

n
α̂e(U(i)) +

α̂e(U(i))
n

[
r∑

i=1

diĜe(U(i))

Ĝe(U(i))− Q̂e(U(i)−)
− nd

]
.
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The proof is completed.

Note that

r∑
i=1

diĜe(U(i))/[Ĝe(U(i))− Q̂e(U(i)−)] =
n∑

i=1

δiĜe(Xi)/[Ĝe(Xi)− Q̂e(Xi−)].

Since E[δiG(Xi)|Xi] = P (Xi ≤ Ci)P (V ∗
i ≤ Xi|Xi ≤ Ci) = P (V ∗

i ≤ Xi ≤ Ci) = G(Xi) − Q(Xi−),

hence, nd/n + 1/n(
∑r

i=1 diĜe(U(i))/[Ĝe(U(i))− Q̂e(U(i)−)]− nd) actually estimates 1.
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4 SIMULATION STUDY

For left-truncated and right-censored data, a simulation study is conducted to examine the perfor-

mance of the α̃n and α̂e. The U∗
i ’s are exponentially distributed: F (x) = 1 − e−x for x > 0. The

V ∗
i ’s are Weibull distribution: G(x) = 1− e−xβ

for x > 0, with varying parameters β = 0.5, 1.0, and

2.0. The Ci’s are defined by Ci = D∗
i + V ∗

i , where D∗
i ’s are independent of V ∗

i and exponentially

distributed: P (D∗
i ≤ x) = 1 − e−x for x > 0. Hence, P (V ∗

i < Ci) = 1 The sample size is chosen

as 100 and 200 and the replication is 5000 times. The estimator F̂e(x) = F̃n(x) is obtained based

on the product-limit form. The estimators Ĝe(x) and Q̂e(x) are obtained based on (3.2) and (3.3).

To demonstrate the performances of F̂e(x), Ĝe(x) and Q̂e(x), Table 1 shows the biases, standard

deviation (std) and squared root of mean squared error (
√

mse) of the three estimators at x = 1.0

and x = 2.0. Table 1 also shows the proportion of truncation (α) and the proportion of death

(p = nd/n). Table 2 shows the biases, standard deviation (std) and squared root of mean squared

error (
√

mse) of the the two estimators α̂e(x) and α̃n. To obtain α̂e(x), the values of x are set at

U(50) and U(100) for n = 100 and n = 200, respectively.

Table 1 shows that the three estimators F̂e(x), Ĝe(x) and Q̂e(x) work satisfactorily for moderate

sample size. Table 2 shows that the α̃n is less biased than α̂e. The mean-squared error of α̃n is

smaller than that of α̂e for all the cases considered.
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Table 1. Simulation results for biases, std and
√

mse

of the estimators F̂e(x), Ĝe(x) and Q̂e(x)

F̂e(1.0) Ĝe(1.0) Q̂e(1.0)

β n α p bias std mse bias std mse bias std mse

0.5 100 0.55 0.72 -0.021 0.062 0.065 0.121 0.120 0.171 0.116 0.079 0.140

0.5 200 0.55 0.72 -0.020 0.041 0.045 0.106 0.099 0.145 0.107 0.063 0.125

1.0 100 0.50 0.75 -0.032 0.073 0.080 0.022 0.089 0.092 0.007 0.062 0.062

1.0 200 0.50 0.75 -0.030 0.055 0.063 0.013 0.067 0.068 0.001 0.042 0.042

2.0 100 0.44 0.77 -0.046 0.126 0.134 0.017 0.083 0.085 -0.074 0.045 0.087

2.0 200 0.44 0.77 -0.027 0.115 0.118 0.005 0.082 0.082 -0.071 0.044 0.085

F̂e(2.0) Ĝe(2.0) Q̂e(2.0)

β n α p bias std mse bias std mse bias std mse

0.5 100 0.55 0.72 -0.012 0.059 0.060 0.023 0.126 0.128 0.068 0.117 0.135

0.5 200 0.55 0.72 -0.013 0.043 0.045 0.002 0.108 0.108 0.051 0.088 0.102

1.0 100 0.50 0.75 -0.016 0.052 0.054 0.020 0.089 0.092 0.008 0.087 0.088

1.0 200 0.50 0.75 -0.015 0.035 0.038 0.006 0.077 0.078 -0.005 0.063 0.063

2.0 100 0.44 0.77 -0.018 0.059 0.062 0.115 0.033 0.117 0.021 0.135 0.135

2.0 200 0.44 0.77 -0.008 0.046 0.047 0.112 0.018 0.115 0.010 0.120 0.120

Table 2. Simulation results for biases, std and
√

mse

of the estimators α̂e and α̃n

bias std
√

mse

β n α p α̂e α̃n α̂e α̃n α̂e α̃n

0.5 100 0.55 0.72 0.1026 0.0904 0.1129 0.1202 0.1526 0.1505

0.5 200 0.55 0.72 0.0948 0.0818 0.0856 0.0895 0.1277 0.1212

1.0 100 0.50 0.75 0.0389 0.0192 0.0924 0.0963 0.1003 0.0982

1.0 200 0.50 0.75 0.0228 0.0087 0.0688 0.0691 0.0726 0.0697

2.0 100 0.44 0.77 0.0378 0.0143 0.1400 0.1328 0.1450 0.1336

2.0 200 0.44 0.77 0.0244 0.0069 0.1112 0.1074 0.1138 0.1077
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