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Valuation of Catastrophe Risk Derivatives by Jump Loss Processes

Abstract

This thesis studies the valuation of catastrophe risk derivatives. The price of
catastrophe risk derivatives is modeled by a double trigger put option, which depends
on the underlying asset price and the cumulative level of insurance loss. Under the
risk-neutral pricing measure, the value of double trigger put option can be expressed
as a discounted expectation. This expectation involves, apart from the usual
Black-Scholes put option, a loss claims process and its corresponding aggregate loss.
The loss claims are assumed to be non-homogeneous Poisson processes, and the sizes
of loss claims are characterized by a sequence of independent and identically
distributed random variables. The accumulated loss process can be described by a
compound process. This thesis develops a model for catastrophe put option by
considering several non-homogeneous Poisson processes for loss claims arrivals and
different distribution functions for the sizes of losses. We analyze and validate the
pricing model and discuss how different parameters affect the value of the catastrophe

risk option.



1. Introduction

Catastrophe Risk Securitization:

Catastrophe risk events referring to both human and natural disasters are
unpredictable. Human disasters, such as terrorist attacks, War, strike, airplane crash
lead to significant impacts to our society. Natural disasters, such as earthquakes,
tsunamis, typhoons, hurricanes, tornadoes, cold waves, heat waves, floods, droughts,
earth flow can cause a tremendous loss of property. Losses caused by natural
disasters are usually greater and much more difficult to predict than those caused by
human factors. For example, in August 1992, Hurricane Andrew caused extreme
damage to the southeastern part of the United States, and brought $26.5 billion in total
losses. Hurricane Andrew is a catastrophe event based on the rules of Property Claim
Service (PCS) in the United States, where a “catastrophe” is defined as a disaster with
more than $25 million of property loss.

Losses from such a destructive disaster could severely affect insurers, policy
holders, and the reinsurance companies. Traditionally, insurers purchase reinsurance
contracts to hedge and transfer underwriting risk to reinsurance markets and capital
markets such that loss can be reduced. However, insurers still suffered huge losses,
and even have financial crisis. Therefore, the reinsurance companies, under financial
pressure, either increase reinsurance transaction costs to cover catastrophic loss, or
restrict further reinsurance conditions. Consequently, it is much harder for reinsurance
companies to compensate the catastrophic losses at a reasonable price. In the past two
decades, it is not easy to find a reinsurance company which can make up for
catastrophe losses at a reasonable cost.

In order to expand the capacity of reinsurance industry, securitization of the
accumulated catastrophic losses in financial markets has become a timely and
desirable alternative to the traditional reinsurance norm (D'Arcy and France, 1992).
Catastrophe risk securitization is a new risk management tool, and many commaodities
are insurance-linked financial securities. The concepts of these products involve
multiple risks and multiple periods. The multiple risks involve the combination of
various insurance risk (e.g., actuarial science) and financial risks (e.g., derivatives
pricing). Extending single period to multiple periods is beneficial in more stable
premiums (Cox et al., 2004).



Catastrophe derivative financial products generally include catastrophe futures,
catastrophe bonds, and catastrophe options. Derivatives are financial contracts whose
value is based on other underlying assets, that is, the value of derivatives is derived
from the value of the underlying assets. Therefore, derivatives are also called
contingent claims.

Catastrophe Futures:

The Chicago Board of Trade (CBOT) launched the Catastrophe Insurance
Futures and Catastrophe Insurance Futures Options in 1992. The CBOT designed the
loss ratio index, which was calculated by the Insurance Services Office (1SO) based
on the loss data of more than 25 selected companies. The catastrophe loss ratio index
is the ratio of the total amount of catastrophe loss per quarter L,to the quarterly

premium I, that is, % The decision on the price of the insurance futures F; is
25,000 US dollars per unit contract plus the catastrophe loss ratio (upper limit is 2):
Lt
F, = 25,000 x Mm(ﬁ' 2)

In order to limit the unexpected loss of credit risk, the CBOT limits the maximum loss

rate at 200%. However, there is no event that practically reaches the maximum loss
rate, and we can thus ignore the maximum loss rate and write the value P,of

catastrophe insurance call option as
25,000

Pr=(F—K)s = (L = B)+

nK
25,000’

where K is the strike price, B = and (a —b), = max(a — b, 0).

Dassios and Jang (2003) substitute the total amount of money L; by C; =
Z?’;lzi, where Z;’s is the claim amounts and N is the number of claims for time,
and assume that the strength function is the shot noise of the Cox process. Ignoring
the maximum loss ratio, Dassios and Jang (2003) used the piecewise deterministic
Markov process theory to explore the pricing of the following insurance future

25,000
90 E[(C, — B)s ]

Catastrophe Bonds:
Catastrophe risk bonds (CAT bonds) are one of the most important financial
securities associated with insurance, also known as insurance-linked bonds. The first



successful CAT bond was $ 85 million issued by Hanover Re in 1994 (Laster, 2001).
Another CAT bond was issued by a non-financial firm, in 1999, which covered the
earthquake losses in Tokyo for the company Oriental Land (Cummins, 2008). Since
then insurers have increased to use catastrophe bonds to transfer insurance risks to
capital markets. Catastrophe bonds have advanced into valuable risk management and
investment tools by combining elements from both the reinsurance and debt capital
markets.

Because the occurrence of catastrophe is largely unpredictable, valuation of CAT
bonds is very difficult. In spite of this, the study of pricing bond models has played a
crucial role in the prevention and mitigation of natural disasters. The structure of the
CAT bond can be described by Figure 1 (Ma and Ma, 2013).

Principal+LIBOR

Premium +Premium

Sponsor Special Parpose Investors

Vehicle (SPV)
Compensation Principal
Investment Premium
Income & Principal
Investment
Income Highly Related

Swap

short-term Investors

Counterparty (Trust Account)

LIBOR

Figure 1. The structure of CAT bond

The CAT bound structure involves a sponsor (insurer, reinsurer, or government)
who seeks to transfer the risk to investors who accept the risk for higher expected
returns. The transfer of risk to the capital market is achieved by creating a special
purpose vehicle (SPV) that provides coverage to the sponsor and issues independently
regulated bonds to investors. The sponsor pays a premium in exchange for a
pre-specified coverage if a catastrophic event of a certain magnitude takes place and
investors purchase a bond. The SPV collects the capital and invests the proceeds in
safe and short-term securities (e.g., Treasure bonds), which are held in a trust account.
The returns generated from this trust account are usually swapped for floating returns
based on the London interbank offered rate (LIBOR) that are supplied by a highly
rated swap counterparty. The reason for the swap is to immunize the sponsor and the
investors from interest rate (market-to-market) risk and default risk (Cummins, 2008).



If the covered event (also known as trigger event) does not happen during the
term of the CAT bonds, investors receive their principal plus a compensation for the
catastrophic risk exposure. However, if a catastrophic risk event occurs and triggers
specified in the bond contract during the risk-exposure period, then the SPV
compensates the sponsor according to the CAT bond contract. This results in a
partial or full principal to the investors (Loubergé et al., 1999).

Obviously, defining triggering events plays an important role in structured CAT
bonds. This catastrophe event should be measurable and easy to understand. Ma and
Ma (2013) derived the pricing formula for the CAT bonds under the stochastic interest
rate environment. They suggested two trigger scenarios

=L 2D
and
e[ M2
where D is the threshold for the CAT bonds contracts, and Ly is the total amount of
debt due to the maturity of the bond, when the time must be paid to the bondholder's
principal ratio, for the debt.

Catastrophe Options:

Option contract is a derivative financial product with special profit and loss
characteristics. After paying premium, buyer has the right to buy or sell a certain
amount of underlying asset at a predetermined price during a period of time. After
receiving premium, seller has the obligation to sell or buy the underlying asset when
buyer exercises his right during the term of option.

A standard European put option provides the owner with a payment at time T of
K — S if S; < K, since the option owner can buy the stock in the market for a price
of S; per share and immediately sell it under the terms of the put option for K per
share. The option expires without a payment if S; > K. A standard European put
option is thus written as

w-so={ 7% Sk

where K is the exercise price, and S, is the value of the underlying asset at time T.
The client has the right to sell one share at time T for a price of K. The client will
exercise the option only if the market price of equity is below the exercise price K.

6



As we don’t know the future value of the underlying asset, the value of European

put option is given by the expected discounted value
P, = e TE[(K = Sp).].
This formula involves several variables: the underlying asset price (S), the strike price
(S7), the maturity time (T), the volatility (o), and the risk-free interest rate (r). Black
and Scholes (1973) derived the value of European put option as
P = Ke " Td(—d; + oVT) — So®(—d,),
where S, is the current price of the underlying asset, @ is the cumulative distribution
function (cdf) of the standard normal distribution, and
dl _ ln(%o)+<r+%2)T.
oVT

In 1996 the first catastrophe equity put option or CatEPut option was issued on
behalf of RLI Corp., giving RLI the right to issue up to $50 million of cumulative
convertible preferred shares (Punter, 2001). The CatEPut option gives RLI the right to
issue convertible preferred shares at a fixed price, similar to the general call options.
This right can only be exercised if the catastrophe cumulative loss exceeds the critical
coverage limits during the term of the option. CatEPut option is a special case of the
so-called double trigger option. A double trigger options depends on two random
variables: the underlying asset price and the level of insurance loss. The payoff to the
CatEPut option can be written as (e.g., Jaimungal and Wang, 2005)

R e I S

where Sy is the market price of the asset underlying the option, L; — L; is the
overall claims during [t,T), D is the loss level of the trigger, and K is the price at
which the issuer is obliged to purchase the stock when the loss exceeds D.

Motivation of Study:
Pricing catastrophe risk derivatives is an important issue in reinsurance industry.

In practice, many of existing pricing models assumed that catastrophe claim arrivals
follows a homogeneous Poisson process (HPP) and applied compound Poisson
process to aggregate the catastrophe asset loss. However, most models do not consider
that catastrophe claim arrivals follow a non-homogeneous Poisson processes (NHPP).
Since the loss claims often arrive in a particular trend or in cluster, therefore it is
reasonable to assume that the catastrophe loss claims arrive according to NHPPs.



This thesis explores the pricing of European catastrophe put options, based on
the risk neutral evaluation hypothesis. We apply the cumulative process for pricing
European catastrophe put option, through various kinds of stock price jump models.
Stock price jump models are characterized by NHPPs.

Contents:

The rest content of this thesis are given as follows. Section 2 gives the valuation
theory, which provides the foundation for deriving the pricing model. Section 3
describes the double trigger model for catastrophe risk put options, including jump
processes (NHPPs) and accumulated loss distributions. Pricing catastrophe risk put
option is given in Section 4. The pricing model involves the accumulated loss
distribution, the NHPP, and the Black-Scholes model. In order to evaluate the
pricing model, in Section 5 we derive distributions for the size of loss claims and
NHPPs for loss claims arrivals. In Section 6, a real data set is applied to fit both
distributions and NHPPs in order to calibrate parameters of the pricing model. A
numerical analysis is given in Section 7.  Finally, Section 8 gives the conclusions.



2. Valuation Theory

Let {S;,t = 0} be the value of a risky underlying asset defined on a risk-neutral
filtered probability space (Q,F, (Fi)¢s0, P) With {S;,t > 0} adapted to the filtration
(Ft)¢s0, Where F, =0{S,,0<u <t} and P is a probability measure on F =
{F,,t > 0}.

Consider an arbitrage-free financial market. Under the risk-neutral pricing
measure Q (or an equivalent martingale measure), the value of the contingent claim
{C;, T >t} attime t can be expressed by discounted expectations. Let V, denote
the value of the option at time t, then

Ve = E%[D(t, T)Cr|Fy]
where E,? denotes the expectation under the risk-neutral pricing measure Q, given

F,. The value D(¢t,T) = exp(— |, tTr(s)ds) is a stochastic discount factor (Cox et al.,

2004). This formula V; can be stated as that in an arbitrate-free financial market
there exists a stochastic process D(t,T) that prices the contingent claim C; (e.g.,
see Ma and Ma, 2013).

If interest rates are deterministic, the discount factor D(t,T) can be extracted
from the expectation:
V, = D(t, T)E%[Cr|Fy]
In this case, D(t,T) is the value of a T-maturity zero-coupon bond at time t.

The most well-known put option is the Black-Scholes model where D(t,T) =
e "T=Y and C; = (K — Sy),. Another example is given by Cox et al. (2004) with
D(t,T) = e "D and Cr = Igy,2ny(K — Sr)+, Where N, is a HPP with parameter
A,and n is a parameter on the contract.

In the presence of stochastic interest rates, a similar factorization can be obtained
by performing a measure change to the forward-neutral measure QT (for details see,
Jaimungal and Wang, 2005).



The Black-Scholes Model

The Black-Scholes model is the most famous financial model. In the
Black-Scholes model, the price of the underlying asset, S; , is defined on a risk-neutral
filtered probability space (Q,F,(F.):s0,P) and is governed by the following
stochastic differential equation (SDE), the so-called geometric Brownian motion,

dSt = MStdt + O-Stth

where u # 0 is the mean return of the asset, o is the volatility of return, and W; is
a standard Brownian motion under risk-neutral probability measure.

There is a unique solution for this SDE with initial value S,. Using It0's formula
(see Dothan, 1990), the closed form solution is given by

1
Sy = SOexp[(,u — 502) t+oW]

where S; is the price of the underlying asset at time t.

Let Q denote the new measure induced by the change of processes. Measure
Q is equivalent to measure P and whose Randon-Nikodym derivative is given by
(Dothan, 1990, p.210)

aQ p—r 1 p—r
dp - exp[— e WT__( ) T]

for 0 <t < T. The equilibrium price measure Q exists and is finite. Define a new
Brownian motion under Q

M—
We=W,+——t
t= W p

so that we have Q-a.s.,

t t
Sy = 50+rjsudu+ajsudm, 0<t<T
0 0

Hence we have Q-a.s

1 __
S, = Soexp[(r — 502> t+ oW,

10



where r is a risk-free rate.

The logarithm of the underlying asset S; follows the normal distribution with

1 .
mean (r — Eaz)t and variance o?t:

1
InS,~N ((r —502> £, 02t)

The derivation of the closed form solution using the method of transformation is given
in Appendix A.

The price of a European catastrophe put option with maturity T is the expected
discounted value

Ve = E%[e™T(K — Sp)+|F:]

Where {e""S,:t = 0} is a Q-martingale.

11



3. Model Assumptions

In this section, assumptions for the proposed pricing model are given. They are double
trigger option, loss claims process, and accumulated loss distribution.

3.1 Double Trigger Option

A double trigger option depends on the underlying asset price and the level of
insurance loss. It can be activated only if both conditions are satisfied. Specifically,

K-S;, S;<Kand L, -L >D
I{L —L[>D}(K -S;), =
! 0, S;2zKor L;-L <D

where S; is the market price of the asset underlying the option, L. —L, is the overall

claims during [t,T), D is the level of the loss of the trigger, and K is the price
which the issuer is obliged to purchase the stock when the loss exceeds D.

3.2 Loss Claims Process

If a catastrophe event occurs, any insurance company which has experienced loss
whose share price will also show a down jump. Therefore, it is quite possible that the
put options will be in-the-money, and reinsurance companies will be required to
purchase shares at an unfavorable price. It is desired to have a model that describes
the stock value process and the dynamic changes of the loss. Cox et al. (2004)
introduced a model for the first time to price options for catastrophe association. They
assumed that the asset price process is dominated by geometric Brownian motion and
jumps down a predetermined size in the event of a catastrophe event. They assumed
that only catastrophe events would affect the price of the stock, and the size of the
catastrophe itself is uncorrelated to the stock price.

In this thesis, NHPP models are used when the occurrences of events are

time-related. The intensity function {A,,t = 0} of a NHPP {N,,t > 0} is a function
of time. The most well-known definition of NHPP is described as follows.

12



(1) No(0) =0

(2) {N;,t = 0} has independent increments.

() P(Neyn — Ny =1) = Ath + o(h)

(4) P(Nerp — Ne 2 2) = o(h).
The main feature of a NHPP is that N, — N; follows a Poisson distribution with the
mean value function m;,; — m;, where m, = E[N;], and it can be expressed as the
integration of the intensity function

my = fot A, du.

3.3 Accumulated Loss Distribution

The accumulated insured property losses L, is given by
= X, X,

That is, L; is characterized by a compound process with two main components: one
characterizing the frequency (or incidence) of catastrophic events and another
describing the severity (or size or amount) of gain or loss resulting from the
occurrence of a catastrophic event (Klugman et al., 2008; Tse, 2009). The occurrences
of potentially catastrophic events specified in the contract is defined in terms of an
adapted process {N;t = 0}. This adapted process is assumed to be a NHPP
representing, for example, the number of hurricanes during [0,t). The underlying
NHPP is described by its intensity function A, and mean value function m; =

fOtAudu. The insured losses incurred by each event in the time flow

0<t <t,<..-<Tare assumed to be independently and identically distributed (iid)
random variables {X;};>; with the distribution function G(x) = P(X < x) and the
probability density function (pdf) g(x) = dG(x)/dx. Random variables N, and

{X;} are assumed independent.
The distribution function of L, is given by
P(Lt < x) - Zn OG(n)( ) mt] mt’

where 6™ (x) = P(X; + -+ X,, < x) is the n-fold convolution of G. It is known
that the expectation of L is given by
ELt = E(Nt)E(Xk) = mt "%

13



where w = E(Xy)
Let Y =inf{t:L, > D} denote the time when the total number of claims
exceeds the threshold level D for the first time. The expectation of Y is given by
E(Y) = [ P(Y > t)dt = 552, G™ (D) [;* & e -meqr,

where we use the fact that P(Y > t) = P(L; < D). When {N,, t = 0} is a HPP with
parameter A, the expectation of Y can be approximated by renewal theory as

0c% + w?
2w?

= A" 1w 1D
_ (n) YO atg = 2N copy ~ = (2
E(Y) EOG (D)f0 e Mdr =< EOG (D)~ (=+ )
n= n=

where w = E(X),) and a2 = Var(Xy,).

14



4. Pricing Double Trigger Put Option

In this section, the SDE and the valuation of double trigger put option are given.

4.1 SDE

The price per share S of the double trigger put option is defined by the stochastic
equation

2
S, =S, exp{—aL[ + oW, +(y—%}t}

where S, is the initial price, p is the mean return of the asset, and o is the

volatility of return. The factor « >0 gives the percentage drop in the share value per
unit of loss (or a measure of impact of the level of claims on the market price of the

share value). Let {W,:t>0} be a standard Brownian motion, and{L, :t >0} be an

accumulated loss process. We assume that these two stochastic processes are
independent.

This SDE is a generalization of Black-Scholes formula in the sense that if no
large loss claims occur during the interval (t,t+At) then the price S, follows a

geometric Brownian motion. Otherwise, the price changes fromS, to S, =e S,

where y is the amount of loss claimed during the interval (t,t+ At)

Let r be a risk-free interest rate. Let Q denote the new measure induced by the
change of processes. Define a new Brownian motion under Q
Y ad t §

W, = t+W,.
(o)

Thus, we have Q-a.s.,
2 -~
S, =S, exp{—(aL, —kt)lexp {(r —%jt +oW, }

15



Measure Q is equivalent to measure P and

dQ u—k—r 1 ﬂ—k—rj‘2
—= =g ___________VV I 1‘
dP Xpl: o T 2[ o

The equilibrium price measure Q exists and it is finite. The discounted relative price

processes{e 'S, :t >0} isa Q-martingale.

As argued by Cox et al. (2004) and Jaimungal and Wang (2005), the factor k is

—al+kt

chosen such that Eple le. It can be shown that

K =%j:(1—exp(—ay))g(y)dy-

4.2 Catastrophe Put Option
Under the risk-neutral pricing measure Q, the value of double trigger put option
depends on two contingencies, catastrophe events and option prices:

K-S;, S;<Kand L -L >D

I K-S;), =
{LrLt>D}( r)- {o, S;2Kor L, -L, <D

where 0<t<T.

Let V, denote the value of the option at time t, then the value of double trigger

put option at time t can be expressed via discounted expectations:

Vi = EtQ[eir(Tit)l{LTprD}(K -S57). K]
where E2 denotes expectation under the risk-neutral pricing measure Q, givenF,.

The value of V, can be obtained by conditioning on L; and taking expectation:

V, = EtQ[efr(Tft)l{LT,LpD}E[Q[(K =-S5, IL1IR]

Thus,

Vi = [leTVERI(K =S;). | Ly = y| RIIP(L; <)
J

16



The price e "™ YEC[(K —S;), | L; = y], conditionally on L, =y, is given by the usual
Black-Scholes formula, with an initial starting price of S, exp {~(al, —kt)}, for

L, >D with D" =max(D-L,,0). Thus we have

e TVES(K -S,), | Ly = y] = Ke T 0D(=d,(y) + 0T —1) — Spe ¥ “T0d(~d(y))
where
S, N ) (ay —K(T
In(K)+(r+ 2]@ t) —(ay —k(T —t))
oJT -t

d,(y) =

Recall that,
dP(L <y)=Y gy Mle [”‘T]
n=0

Therefore the value of the option at time t is given by

Vi
=EXe" "V, o (K=S;), |F]
m 7m I n —r(l- A -
[ el t)] a I)J. ™ (y)[Ke T ‘)®(—d1(y)+0~/T —t)-Se ™ k@ ‘)cD(—dl(y))]dy
n= o

o,

where K is the exercise price, r is the interest rate, T is the term of the option, L. —L,
is the overall claims during [t,T),D” =max(D-L,,0), m, is the expected number of

large claims, S, is the price of the underlying asset at time t, k is given by

=0 a-eg(ay.

and d,(y)is given by

|n(f(tj+(r+°;ja _t)— (ay k(T —1)

ovT —t

dl(Y) =

The loss trigger level D can be set as the multiple of the expected loses over the
term of option:

17



D =cE[N; =N, ]JE[X,]=c(m; —m,)e,

where ¢ is a constant representing the trigger ratio level. For example, if c=2 is
chosen, the trigger level is equal to twice of the product of the expected loss per claim
and the expected number of claims during [t,T).

The factor « gives the percentage drop (or impact) in the share value per unit
of loss. This factor is usually taken to be 0.02 (Jaimungal and Wnag., 2005). When the
occurrence of claims has no impact on the price of the underlying asset, i.e.,a=0
(and consequently k =0), the value of the option V; becomes

ve=y (o1 g [ o™ (y)[Ke " TOD(~d, + 0T —t) - S,D(~d,)Idy
J

o n
|n(§j+(r+";j(r ~1)

oJT —t

where

d, =

The pricing model V; contains several models as special cases. They are:

Special Case 1: Model of Black and Scholes model (1973)
When the price of the underlying asset has no jump and follows the geometric
Brownian motion:

1 —_—
St = SoeXp[(T - 50-2) t+ O-Wt],

and the pricing of put option can be expressed as the usual Black-Schloes model:

V.= Ke TT-ON(=d, + oNT — t)—S,N(—d,).

Special Case 2: Model of Cox et al. (2004)
Define the payoff of catastrophe put option as Cr = 1y,snj(K — Sr); and
D0, T) =e T as

_(K—=8r ifSy<KandN,=n
Lineeny(K = Sr)+ —{ 0 ifSp = KorN, <n

The pricing formula becomes

18



- . AT)
Vp = Z[Ke‘ﬁcb(dj) — Sie "MK p(d; — gVT)]e “ry j')
j=n '
lnsﬁ—rT+Aj—kT+¢ _
where dj = —° 7 and A denotes the measurement of impact of level of
claims.

Special Case 3: Model of Jaimungal and Wang (2005)
Let L, = Z?’;O l; denote the accumulated loss of the insured at time t, where

{N.,t = 0} is the HPP claims arrival process and I; is the amount of loss per claim.
Let D(0,T) =e™"T and Cy = Li>py(K — S7)4.  The pricing formula becomes
TR T atyir _ir OT)
Vo=t FOOIKeTTO0(A0)) = Spe O N0y — VDeH )
=1 D .

J

where f(y) is the pdf of the loss distribution, and k satisfies

k=20 -e ) fOay.

19



5. Evaluation of the Pricing Model

The pricing model derived in the previous section is given by

Vt

© m n o]
=3l e e g0 y)iKe T 00(-0,() + VT 1) -S4 V(-0, () ky
n=0 : hes

This pricing model involves the accumulated loss distribution, the NHPP, and the
Black-Scholes model. In order to evaluate the value of the option, we indicate in this
section three distributions for the size of claims and three NHPPs for loss claim
arrivals.  In next section, we use a real data set to fit both distributions and NHPPs in
order to calibrate parameters of the pricing model.

5.1 Approximation for Accumulated Loss Distribution
The pricing model V; involves the accumulated loss distribution, which is
difficult to compute especially when n is large. To cope with this difficulty, some

well-known methods for the accumulated loss distribution F (y)=P(L <y) are

developed: the Fast Fourier Transform, simulation method, approximation method, etc.
This thesis uses an approximation method to evaluate the accumulated loss density

[m - ]n —Mer—t n
(Tn't) e ™ )g()(y)_

function f (y)=P(L,=Yy)= i

n=0

The (re-)insurance industry has suffered huge losses due to catastrophe risk
events. This brings the application of the so-called heavy-tailed distributions for large
size of loss claims. The heavy-tailed distributions include the log-normal, the
log-gamma, and the Weibull distributions, among others (see Mikosch, 2004, Chapter
3). The use of gamma distribution is also popular in pricing catastrophe risk
derivatives (Jaimungal and Wang, 2005; Ma and Ma, 2013).

In general, the approximation of f_(y) is h_(y), which is a function that uses

the mean g, =E[L], the variance o =Var[L], and even the skewness
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a, =, /oo and the excess kurtosis o, —3=(u,,/c.)—3, where g, is the kth

moment about 4, . Following the same approach by Lee and Yu (2002) and

references therein, we only need to set the first two moments of h (y) to be equal to
f_(y). In this thesis, we consider gamma, log-normal, and Weibull distributions as
the loss claims distributions.

(A) The density function of a gamma distribution X with shape parameter « and
scale parameter g is given by

a-lgXIf
MKQJDZTZBE;, x>0,a>0,3>0.
The mean and variance of X are, respectively,
E(X)=ap
Var (X) = aff’

The accumulated gamma loss distribution f,_ (y) can be approximated by h, (y),
which is a gamma distribution with mean g, and variance o’ given by,

respectively,

= E(L) = EINOIE[X]=m() - a8

or =Var(L) = E[N(®)IE[X *1=m(t)- (a8 + > 7).

(B) The density function of a log-normal distribution X with location parameter .
and scale parameter o is given by

The mean and variance of X are, respectively,

J, X>0,0>0,—00o< <0,

E(X) =exp(y+%2]

Var(X) = exp(2,u+202)—exp(2y+oz)
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The accumulated log-normal loss distribution f (y) can be approximated by
h_(y), which is a log-normal distribution with mean g, and variance o/ given by,

respectively,

#y =E(L) = EIN@®IE[X]=m(t)-exp(u +3 07

o2 =Var(L,) = E[N (JE[X*] = m(t) -exp (2 + 207)

(C) The density function of a Weibull distribution X with shape parameter » and
scale parameter g is given by

g(X:%ﬂ)=%(%Jexp{(%j } x>0,3>0,7>0

The mean and variance of X are, respectively,

E(X)=ﬂ-l‘[1+£}
y

Var(X) = g° -{F(M EJ—F{H Eﬂ
Y Y

Following the same approach for the log-normal distribution, the accumulated
Weibull loss distribution f_(y) is approximated by h (y), which is a Weibull

distribution with mean , and variance o given by, respectively,

n =E(L[>=E[N(t)]E[X]=m(t)-ﬂ-r[uﬂ

o2 =Var(L,) = E[N()]E[X *] = m(t) - £ -1“(1+2].
4
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5.2 Non-homogeneous Poisson Process

NHPP is more appropriate than HPP when events are more likely to occur at
certain times than at the other times. Since the loss claims can arrive in cluster, thus it
may be suitable to assume that the catastrophe loss claims arrive according to a NHPP.

One important feature of NHPP is the property of independent increments. One
well-known method for constructing NHPP is to solve the following differential
equation:

dm(t

A~ bora -m(]
where m(t) is the expected number of loss claims occurred by time t, a(t) is the total
number of observed loss claims by time t, and b(t) is the occurrence rate per claim at
time t. Three NHPP models are given in Table 1. They are the Goel-Okumoto model,

the delayed S-shaped model, and the inflection S-shaped model (Lyu, 1996).

Model Name m(t) At)

m(t) = a(l —e~ Pt A(t) = abe™Pt
Goel-Okumoto a(t) =a

b(t)=»

_a(l—e™) _abe "' (1+p)

Inflection S-shaped m(®) = 1+ Be-bt A0 = (14 Bebt)2

a(t) =a

PO = e

m(t) = a[l — (1 + bt)e™Pt] A(t) = ab®te™Pt
Delay S-shaped a(t) =a
b2t
1+ bt
Table 1. NHPP models.

b(t) =
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6. Parameters Calibration

To estimate and calibrate the parameters of the pricing model, we need to fit h (y),
the approximated density function of accumulated loss distribution, and N,, the loss

claims process.

6.1 Data Set

The generic data set of Munich Re’s NatCatSERVICE is a database for evaluating
and analyzing natural catastrophes. The institution has recorded the loss data from all
over the world since 1980. It only records events whose losses are over a
predetermined threshold. The database provides the information that could be applied
for assessing the risk. The insurance loss and total loss of natural catastrophe events
are listed individually in each form. For example, ten costliest Hurricanes in the US
1980-2015 are shown in Table 2.

Time Event Overall Losses | Insured Losses
in US$m inUS$m
Aug, 2005 Hurricane Katrina 125000 60500
Nov, 2012 Hurricane Sandy 68500 29500
Sep, 2008 Hurricane lke 38000 18500
Aug, 1992 Hurricane Andrew 26500 17000
Sep, 2004 Hurricane Ivan 23000 11800
Oct, 2005 Hurricane Wilma 22000 12500
Aug, 2004 Hurricane Charley 18000 8000
Sep, 2005 Hurricane Rita 16000 8600
Sep, 1998 Hurricane Georges 13300 4300
Sep, 2004 Hurricane Frances 12000 5500

Table 2. Ten Costliest Hurricanes in United States 1980-2015.

To validate the pricing model, we apply the data set used by Ma and Ma (2013).
This data set is a part of the Property Claim Service (PCS) loss data for catastrophe
events occurred in the US from 1985 to 2010. The amount of losses is transformed to
2010 dollars using the Consumer Price Index (CPI) to adjust for inflation. The
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adjusted PCS loss data between 1985 and 2010 is shown in Figure 2. The cumulative
number of catastrophe events in the US between 1985 and 2010 is given in Figure 3.

The PCS loss (billion dollars)

Ccumulative Number of CATs

The PCS loss data.
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Figure 2. The PCS loss (billion dollars).
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Figure 3. Cumulative number of CATs.



6.2 Estimation of Accumulated Loss Distribution

Three loss claims distributions are the gamma, the log-normal, and the Weibull
distributions. Parameters of the distribution functions are estimated by maximum
likelihood estimation (MLE). The results of the parameter estimation are given in
Table 3.

The accumulated loss distribution is one part of the pricing model, and it affects
the option prices. To evaluate the effectiveness of fitting performance, a set of
comparison criteria is employed to compare chosen distributions quantitatively. The
comparison criteria we used are AD statistic and AIC.

Table 3 shows that all three distributions pass the AD statistic test at 5% level of
significance. The log-normal with parameters . =2.382 and o =0.8844, and the
gamma distributions with parameters a=1.529 and b=10.16 have lower AD values,
we thus use both distributions as accumulated loss amount for numerical analysis in
next section. Also, Table 3 shows AIC values of all distributions.

(A) Anderson-Darling (AD) statistic: The AD test is a form of minimum distance
estimate, which is designed to detect the difference in the tails between the data and
the fitted distribution. The AD statistic is defined by

1&G ..
AD=- > (2 ~1)-[InF (X)) +In@- F(X,_.)]-n.

If the test statistic AD is greater than the corresponding critical value C_(at o level

of significance), we reject the data follow the predetermined distribution.

(B) Akaike information criterion (AIC): AIC is computed as follows (Konish and
Kitagawa, 2008):
AIC =-2In(L)+2k,

where K is the number of parameters in the model, and L is the maximized value of the
likelihood function for the estimated model. AIC takes the degrees of freedom into
consideration by assigning a model with more parameters a larger penalty. Given a
data set, several competing models may be ranked according to their AIC, with the
one having the lowest AIC being the best.
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Distribution Log-normal gamma Weibull
Parameters u=2.382 a=1.529 y =1.206
c=0.8844 b=10.16 £ =16.65
: : 0.373
AD (C,, =25018) | 2101 0315
AIC 214.1464 198.7547 199.8861

Table 3. Parameter estimates for accumulated loss distributions.

6.3 Estimation of Loss Claims Process

Parameters of the loss claims process are estimated by the least square errors (for
the Inflection S-shaped model only) and the maximum likelihood procedure. From
Table 4, the Goel-Okumoto model with parameters a=2935 and b=8.0286x10",
and the Delayed S-shaped model with parameters a=982 and b=0.1137 have
lower values of AIC. Thus we use the Goel-Okumoto and the Delayed S-shaped
models for loss claims processes.

NHPP Processes | Inflection S-shaped Delayed S-shaped | Goel-Okumoto

Parameters a=1101 a=982 a=4140
b=7.445x10"° b=0.1137 b =8.0286x10""
B=1.668x10"°

AlC 5630 258 169

Table 4. Parameter estimates for loss claims processes

Note that parameter a is the expected number of events that initially exist in the
flow of occurrences, and parameter b is the occurrence rate per event. For the
Inflection S-shaped model, parameter g is equal to (1-r)/r where r is the inflection

factor (Lyu, 1996).
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7. Numerical Analysis for the Pricing Model

In this section, the pricing model V, is analyzed. We will discuss influences of

the choice of the pricing model parameters. Recall that the pricing model is given by

V, = i[mﬁn—‘;)]ne‘m“ Tg(") (NI[Ke T VD(~d,(y) + ovT —t) - S,e TV (-d, (y))ldy
where

S, ST ) (ay k(T —
In(Kj+(r+ 2]@ £) = (ay —k(T - 1))

L= VTt

For the accumulated loss distributions, we consider the log-normal distribution
with parameters 4 =2.382and ©=0.8844 and the gamma distributions with

parameters a=1.529 and b=10.16. For the NHPP loss claims arrivals, we consider
the Goel-Okumoto model with parameters a=4140 and b=8.0286x10"°, and the
Delayed S-shaped model with parameters a=982 and b=0.1137.

We assume that the maturity time T <[1,5] years, because an option usually has
1 to 5 year term. The loss trigger level D is assumed to be the multiple of the expected
losses:
D ~cE[L,]
where c is a constant representing the trigger ratio level. For example, if c=1 is chosen,
the trigger level is equal to the product of the expected loss per claim and the expected
number of claims during [0,T]. We assume that the trigger ratio level is c=1.

The factor « gives the percentage drop in the share value per unit of loss, and
the factor k is chosen such that

K =%j:(1—exp(—ay))g(y)dy-

The value of factor kis determined by the value of factor « . The following table
shows values of k for maturity time T €[1,5] when value of « is specified under

the Goel-Okumoto NHPP and the gamma loss assumptions.
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7=1 T=2 7=3 T=4 7=5
a=0 0 0 0 0 0
a=0.001 | 0.015477 |0.015415 | 0.015353 | 0.015292 | 0.015231
a=0.01 0.149781 | 0.149182 | 0.148586 | 0.147994 | 0.147404
a=0.02 0.289401 | 0.288244 | 0.287093 | 0.285948 | 0.284809
a =0.05 0.658817 | 0.656183 | 0.653563 | 0.650957 | 0.648365
a=0.1 1.155368 1.150748 1.146154 1.141583 1.137037
a=05 3.166444 | 3.153783 | 3.141191 | 3.128665 3.116206

Table 5. Values of k for different drop percentage « and maturity time T

(year) using Goel-Okumoto NHPP and gamma loss.

Parameters are set by: exercise price K=80; interest rate, r=0.05; volatility,
o =0.2; percentage drop, «a=0.02; maturity time, T [15] years; price of the
underlying asset, S [0,110]. We now calculate the option price for various models.

Figure 4 shows the catastrophe risk option price with respect to the price of asset
and maturity time under Goel-Okumoto NHPP and gamma loss assumptions. Figure 5
shows the catastrophe risk option price with respect to the price of underlying asset
and maturity time under Goel-Okumoto NHPP and log-normal loss assumptions.
Both figures show that the option prices decrease as the price of asset increases, and
increase as the time to maturity increases (for asset prices S larger than 60). For
small asset prices (S <60), the option prices have maximum values around maturity
T=2or T=3.

Figure 6 shows the catastrophe risk option price with respect to the price of asset
and maturity time under Delay S-shaped NHPP and gamma loss assumptions. The
option prices decrease as the price of asset increases, and increase as the time to
maturity increases (for asset prices S larger than 60). For small asset prices (S <60),
the option prices have maximum values around maturity T =1.

Figure 7 shows the catastrophe risk option price with respect to the price of
underlying asset and maturity time under Delay S-shaped NHPP and log-normal loss
assumptions. The option prices decrease as the price of asset increases, and increase
then decrease as the time to maturity increases. For a fixed asset price, the option
prices reach their maximum values around maturity T =4.
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Figure 4. Catastrophe option price with Goel-Okumoto NHPP and gamma loss
for c=1, K=80, r=0.05, =0.2, a=0.02.
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Figure 5. Catastrophe option price with Goel-Okumoto NHPP and
log-normal loss for c=1, K=80, r=0.05, 0 =0.2, «=0.02.
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Figure 6. Catastrophe option price with Delay S-shaped NHPP and gamma
loss for c=1, K=80, r=0.05, 0 =0.2, «=0.02.
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Figure 7. Catastrophe option price with Delay S-shaped NHPP and
log-normal loss for c=1, K=80, r=0.05, 0 =0.2, a«=0.02.

Figure 8 to Figure 13 show the price difference between trigger ratio level
(c=1/4and c=1), percentage drop (a=0.02 and a=0), loss distributions
(gamma and log-normal), and NHPPs (Goel-Okumoto and Delay S-shaped).

Figure 8 shows the price difference between threshold trigger ratios ¢=1/4 and
c=1 under Goel-Okumoto NHPP and gamma loss assumptions. We observe that
trigger ratio level c=1/4 overestimates the option prices. The option prices for a
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small trigger ratio level (c=1/4) are higher than that for a large trigger ratio level
(c=1). The price difference increases sharply when the asset price is small. The
significant price differences show that the trigger ratio level is an important factor and
should be taken into account when pricing catastrophe risk option.

Figure 9 shows the price difference between percentage drop « =0.02 and
a =0 under Goel-Okumoto NHPP and gamma loss assumptions. The option prices
for a =0.02are higher than those for « =0. The difference increase as the maturity
time increases. For a fixed maturity time, the difference has a unimodal shape along
the asset price S and reach its maximum value around S =60. The price differences
indicate that loss claims affect the option prices substantially. The option prices will
increase (decrease) if the percentage drop o« increases (decreases). Thus the
percentage drop is an important factor and need to be taken much care.

Figures 10 and 11 show how the choice of loss claims distribution affect the
option prices. Figure 10 illustrates the price difference between gamma and
log-normal distributions under Goel-Okumoto NHPP assumption. The differences of
the option prices vary from -0.767 to 4.822 dollars. Figure 11 illustrates the price
difference between gamma and log-normal distributions under Delay S-shaped NHPP
assumption. The differences of the option prices vary from -21.83 to 44.54 dollars.
Both figures show that for small asset price (Goel-Okumoto: S <70; Delay S-shaped:
S <40) the gamma loss distribution has higher option prices, while for large asset
price the log-normal loss distribution has higher option price.

Figures 12 and 13 show how the choice of NHPP affect the option prices.
Figure 12 illustrates the price difference between Goel-Okumoto and Delay S-shaped
NHPPs under gamma loss assumption. The differences of the option prices vary
from 0.0406 to 39.72 dollars. Figure 13 illustrates the price difference between
Goel-Okumoto and Delay S-shaped NHPPs under log-normal loss assumption. The
differences of the option prices vary from -21.577 to 0 dollars. Two NHPPs have
opposite results under different distributions. The Goel-Okumoto NHPP overestimates
the option prices under gamma loss assumption, while the Delay S-shaped NHPP
overestimates the option prices under log-normal loss assumption. It is therefore
need to pay attentions to select a suitable NHPP when pricing catastrophe risk option.
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Figure 8. The price difference between threshold trigger ratios c=1/4 and c=1
under Goel-Okumoto NHPP and gamma loss assumptions.
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Figure 9. The price difference between «=0.02 and o =0 under
Goel-Okumoto NHPP and gamma loss assumptions.
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Figure 10. The price difference between gamma and log-normal loss
distributions under Goel-Okumoto NHPP assumption.
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Figure 11. The price difference between gamma and log-normal loss
distributions under Delay S-shaped NHPP assumption.
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Figure 12. The price difference between Goel-Okumoto and Delay S-shaped
NHPPs under gamma loss assumption.
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Figure 13. The price difference between Goel-Okumoto and Delay S-shaped
NHPPs under log-normal loss assumption.
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8. Conclusions

This thesis develops a model to price the catastrophe risk put option. The pricing
model is developed by a double trigger put option, which depends on the underlying
asset price and the cumulative level of insurance loss. We apply the valuation theory
to derive the pricing model. Under the risk-neutral pricing measure, the value of
double trigger put option is expressed via a discounted expectation, and the closed
form of the pricing model is provided. This pricing model involves the accumulated
loss distribution, the loss claims arrival process, and the Black-Scholes model. The
accumulated loss distribution is characterized by a compound distribution and is
approximated by heavy-tailed distributions. The loss claims arrivals process is
assumed to be a non-homogeneous Poisson jump process.

We apply a real data set to fit both accumulated loss distributions and NHPP
arrivals in order to calibrate parameters of the proposed pricing model. The
numerical results show that trigger ratio level, percentage drop, loss distributions, and
NHPPs have important influences for the pricing model. By comparing different
trigger ratio levels, we observed that a small trigger ratio level has higher option
prices than those of a large trigger ratio level. As the percentage drop « increase,
the option price also increases. For the choice of loss distributions, the numerical
results show that for small asset price S the gamma loss distribution has higher option
prices. While for large asset price S the log-normal loss distribution has higher
option prices. As for the choice of NHPPs, we validate that the Goel-Okumoto NHPP
overestimates the option prices under gamma loss assumption, and the Delay
S-shaped NHPP overestimates the option prices under the log-normal loss
assumption.
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Appendix A: Black-Scholes Model

It is well known that the process of price movement of derivatives can be derived
from Ito’s lemma, which was discovered by Ito in the1950s. The Ito’s Lemma assume
that the random variable x can be derived from Ito process

dx = a(x,t)dt + b(x, t)dW
where both a and b are the functions of x and t, dW is a Weiner process. Let x be the
price of derivative. A function f of x and t can be expressed as

of  of 10%f of
df(x,t)=<£a+a+iﬁbz dt+ade

In the following, the Black-Scholes formula is derived from statistical point of
view. Let
Sr: stock price at maturity time T

S,: stock price at time O

u :  assetreturn
o . volatility.
Assume that
(1) The stock price follows log-normal distribution.

0.2
InSy~N { InS, + h=— T,o?T

Since InS; is normally distributed, such that S has a log-normal distribution.
(2) The short selling of securities with full use of proceeds is permitted.

(3) There are no dividends during the life of derivative.

(4) There are no transactions costs or taxes. All securities are perfectly divisible.
(5) There are no riskless arbitrage opportunities.

(6) Security trading is continuous.

(7) The risk-free rate of interest, r, is constant and the same for all maturities.

Pricing European call and put options
Cc = SoN(dl) - Ke_rTN(dz)

p =Ke "TN(—d;) — SyN(—d,)
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So o?
_ ln(;) + (T' + ?)T
! oVT

() +(r - )T
T =d, —oVT

The variables, ¢ and p, are the price of European call and put options, S, is current
stock price, r is the continuously compound risk-free rate, o is the volatility of
stock price, and T is the time to the maturity of the option.

d2=

Proof.
Consider a European call option. The expected value of the option at maturity in
a risk-neutral world is
E[max(S; — K ,0)]
where E denotes the expected value in a risk-neutral world. Assume that the expected
return from the underlying asset is the risk-free interest rate, r (i.e., assume u = r).

Define y = In S, andy follows normal distribution. In a risk-neutral world,
2

o
y = InSy~N(InS, + <r — 7) T,o?T)

2

Let m = InS, + (r —%)T , s2=0?T and f(S;) be the probability density
function of S;.

Blmax(s; — K,00] = [ “max(s; = K.,0)f(s7)dsr = [ (57 = K) f(s0)asy
0 K
© 1 1 y—m 2 oo 1 1 y—m 5
) fm,fy Vams? ¥ (-2657) )= fm’(ﬁe"p (-3(57) e

© 1 1
= exp| —=—@? - 2my + m? — 2y52)> dy
-I;nK V271s? < 2s?

Kf‘” 1 ( 1(y—m)2)d
_ exp (-2 (21—
Ink V21s? A2\ Y
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“ 1 ( 1
= ex __[( _m_SZ)Z +m2—(m+52)2])d
J;nKVZHSZ P 2s? Y Y
@ 1 1,y —m,\2 y—m
_Kﬁnk—mmexp<_§( S ))d( S )
® 1 1, y—-m—-s2 1 - y —m — s?
_ﬁnk_m_szmexp [_E(—s ) — 5z (-2ms* —s )]d —

InK —m malsz o (m+s?—InK m — InK
(o () =

m+s?—Ink nSy+ (T—%O’Z)T-l-O'ZT— InK ln(s;o) + (T'-l-%O'Z)T
dl — — —

S oNT T

m—InK m—InK + s?
d2 = =

—S=d1—0'\/7
S S

1
m+=s

e™ = exp [lnS0 + <r - %O’Z) T+ %O’ZT] = Spe™
Therefore, E[max(S; — K ,0)] = Spe""N(d,) — KN(d,) and the price of European
call option

c = E[max(S; — K ,0)]e™" = SyN(d;) — Ke ""N(d,)
Similarly, the price of European put option

p = E[max(K — S;,0)]e™™" = Ke7""N(—d,) — SoN(—d,)
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