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應用跳躍損失過程評價巨災風險衍生性金融商品 

 

摘要 

本論文主要是探討巨災風險衍生性金融商品的定價。我們使用了雙重觸發機

制的賣權來進行建模，模型取決於標的物價格及累計損失的程度。在風險中性定

價假設下，雙重觸發賣權的價值可以透過折現期望值來表示。我們假設損失賠償

的發生是服從非齊性卜松過程，而每次損失金額的大小則為獨立且分配相同的隨

機變數。總體的損失可以由一個複合過程來表示，本論文針對賠償發生的過程考

慮數個不同的 NHPP，對於損失金額的大小則使用幾個不同的隨機分布來分析。

透過這些特徵，本論文建構了巨災賣權模型的定價，並進行實際數據分析，我們

針對不同參數如何對選擇權價格的影響進行討論。 
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Valuation of Catastrophe Risk Derivatives by Jump Loss Processes 

 

Abstract 

This thesis studies the valuation of catastrophe risk derivatives. The price of 

catastrophe risk derivatives is modeled by a double trigger put option, which depends 

on the underlying asset price and the cumulative level of insurance loss. Under the 

risk-neutral pricing measure, the value of double trigger put option can be expressed 

as a discounted expectation. This expectation involves, apart from the usual 

Black-Scholes put option, a loss claims process and its corresponding aggregate loss.  

The loss claims are assumed to be non-homogeneous Poisson processes, and the sizes 

of loss claims are characterized by a sequence of independent and identically 

distributed random variables.  The accumulated loss process can be described by a 

compound process.  This thesis develops a model for catastrophe put option by 

considering several non-homogeneous Poisson processes for loss claims arrivals and 

different distribution functions for the sizes of losses. We analyze and validate the 

pricing model and discuss how different parameters affect the value of the catastrophe 

risk option. 
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1. Introduction 

 

Catastrophe Risk Securitization: 

 Catastrophe risk events referring to both human and natural disasters are 

unpredictable.  Human disasters, such as terrorist attacks, War, strike, airplane crash 

lead to significant impacts to our society. Natural disasters, such as earthquakes, 

tsunamis, typhoons, hurricanes, tornadoes, cold waves, heat waves, floods, droughts, 

earth flow can cause a tremendous loss of property.  Losses caused by natural 

disasters are usually greater and much more difficult to predict than those caused by 

human factors. For example, in August 1992, Hurricane Andrew caused extreme 

damage to the southeastern part of the United States, and brought $26.5 billion in total 

losses. Hurricane Andrew is a catastrophe event based on the rules of Property Claim 

Service (PCS) in the United States, where a “catastrophe” is defined as a disaster with 

more than $25 million of property loss.  

 

Losses from such a destructive disaster could severely affect insurers, policy 

holders, and the reinsurance companies. Traditionally, insurers purchase reinsurance 

contracts to hedge and transfer underwriting risk to reinsurance markets and capital 

markets such that loss can be reduced. However, insurers still suffered huge losses, 

and even have financial crisis. Therefore, the reinsurance companies, under financial 

pressure, either increase reinsurance transaction costs to cover catastrophic loss, or 

restrict further reinsurance conditions. Consequently, it is much harder for reinsurance 

companies to compensate the catastrophic losses at a reasonable price. In the past two 

decades, it is not easy to find a reinsurance company which can make up for 

catastrophe losses at a reasonable cost. 

 

In order to expand the capacity of reinsurance industry, securitization of the 

accumulated catastrophic losses in financial markets has become a timely and 

desirable alternative to the traditional reinsurance norm (D'Arcy and France, 1992). 

Catastrophe risk securitization is a new risk management tool, and many commodities 

are insurance-linked financial securities.  The concepts of these products involve 

multiple risks and multiple periods.  The multiple risks involve the combination of 

various insurance risk (e.g., actuarial science) and financial risks (e.g., derivatives 

pricing).  Extending single period to multiple periods is beneficial in more stable 

premiums (Cox et al., 2004).  
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Catastrophe derivative financial products generally include catastrophe futures, 

catastrophe bonds, and catastrophe options. Derivatives are financial contracts whose 

value is based on other underlying assets, that is, the value of derivatives is derived 

from the value of the underlying assets. Therefore, derivatives are also called 

contingent claims. 

 

Catastrophe Futures: 

The Chicago Board of Trade (CBOT) launched the Catastrophe Insurance 

Futures and Catastrophe Insurance Futures Options in 1992. The CBOT designed the 

loss ratio index, which was calculated by the Insurance Services Office (ISO) based 

on the loss data of more than 25 selected companies. The catastrophe loss ratio index 

is the ratio of the total amount of catastrophe loss per quarter 𝐿𝑡  to the quarterly 

premium Π, that is, 
𝐿𝑡

𝛱
. The decision on the price of the insurance futures 𝐹𝑡  is 

25,000 US dollars per unit contract plus the catastrophe loss ratio (upper limit is 2): 

𝐹𝑡 = 25,000 × Min(
𝐿𝑡

𝛱
, 2) 

In order to limit the unexpected loss of credit risk, the CBOT limits the maximum loss 

rate at 200%.  However, there is no event that practically reaches the maximum loss 

rate, and we can thus ignore the maximum loss rate and write the value tP of 

catastrophe insurance call option as  

𝑃𝑡 = (𝐹𝑡 − 𝐾)+ =
25,000

𝛱
(𝐿𝑡 − 𝐵)+

 

where 𝐾 is the strike price, 𝐵 =
𝛱𝐾

25,000
, and (𝑎 − 𝑏)+ = max (𝑎 − 𝑏, 0). 

 

Dassios and Jang (2003) substitute the total amount of money 𝐿𝑡  by 𝐶𝑡 =

∑ 𝑍𝑖
𝑁𝑡
𝑖=1 , where 𝑍𝑖′s is the claim amounts and 𝑁𝑡 is the number of claims for time, 

and assume that the strength function is the shot noise of the Cox process. Ignoring 

the maximum loss ratio, Dassios and Jang (2003) used the piecewise deterministic 

Markov process theory to explore the pricing of the following insurance future 

25,000

𝛱
𝐸[(𝐶𝑡 − 𝐵)+]. 

 

Catastrophe Bonds: 

Catastrophe risk bonds (CAT bonds) are one of the most important financial 

securities associated with insurance, also known as insurance-linked bonds. The first 
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successful CAT bond was $ 85 million issued by Hanover Re in 1994 (Laster, 2001). 

Another CAT bond was issued by a non-financial firm, in 1999, which covered the 

earthquake losses in Tokyo for the company Oriental Land (Cummins, 2008). Since 

then insurers have increased to use catastrophe bonds to transfer insurance risks to 

capital markets. Catastrophe bonds have advanced into valuable risk management and 

investment tools by combining elements from both the reinsurance and debt capital 

markets. 

 

Because the occurrence of catastrophe is largely unpredictable, valuation of CAT 

bonds is very difficult. In spite of this, the study of pricing bond models has played a 

crucial role in the prevention and mitigation of natural disasters. The structure of the 

CAT bond can be described by Figure 1 (Ma and Ma, 2013). 

 

 

Figure 1. The structure of CAT bond 

 

The CAT bound structure involves a sponsor (insurer, reinsurer, or government) 

who seeks to transfer the risk to investors who accept the risk for higher expected 

returns. The transfer of risk to the capital market is achieved by creating a special 

purpose vehicle (SPV) that provides coverage to the sponsor and issues independently 

regulated bonds to investors. The sponsor pays a premium in exchange for a 

pre-specified coverage if a catastrophic event of a certain magnitude takes place and 

investors purchase a bond. The SPV collects the capital and invests the proceeds in 

safe and short-term securities (e.g., Treasure bonds), which are held in a trust account. 

The returns generated from this trust account are usually swapped for floating returns 

based on the London interbank offered rate (LIBOR) that are supplied by a highly 

rated swap counterparty.  The reason for the swap is to immunize the sponsor and the 

investors from interest rate (market-to-market) risk and default risk (Cummins, 2008). 
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If the covered event (also known as trigger event) does not happen during the 

term of the CAT bonds, investors receive their principal plus a compensation for the 

catastrophic risk exposure. However, if a catastrophic risk event occurs and triggers 

specified in the bond contract during the risk-exposure period, then the SPV 

compensates the sponsor according to the CAT bond contract.  This results in a 

partial or full principal to the investors (Loubergé et al., 1999). 

 

Obviously, defining triggering events plays an important role in structured CAT 

bonds.  This catastrophe event should be measurable and easy to understand. Ma and 

Ma (2013) derived the pricing formula for the CAT bonds under the stochastic interest 

rate environment. They suggested two trigger scenarios 

𝑃𝐶𝐴𝑇(𝑇) = {
𝑍, if 𝐿𝑇 ≤ 𝐷

𝑝𝑍, if 𝐿𝑇 > 𝐷
 

and 

𝑃′𝐶𝐴𝑇(𝑇) = {
𝑍 + 𝐶, if 𝐿𝑇 ≤ 𝐷

𝑍, if 𝐿𝑇 > 𝐷
, 

where 𝐷 is the threshold for the CAT bonds contracts, and 𝐿𝑇 is the total amount of 

debt due to the maturity of the bond, when the time must be paid to the bondholder's 

principal ratio, for the debt.  

 

Catastrophe Options: 

Option contract is a derivative financial product with special profit and loss 

characteristics. After paying premium, buyer has the right to buy or sell a certain 

amount of underlying asset at a predetermined price during a period of time. After 

receiving premium, seller has the obligation to sell or buy the underlying asset when 

buyer exercises his right during the term of option. 

 

A standard European put option provides the owner with a payment at time T of 

𝐾 − 𝑆𝑇 if 𝑆𝑇 < 𝐾, since the option owner can buy the stock in the market for a price 

of 𝑆𝑇 per share and immediately sell it under the terms of the put option for 𝐾 per 

share. The option expires without a payment if 𝑆𝑇 ≥ 𝐾. A standard European put 

option is thus written as 

(𝐾 − 𝑆𝑇)+ = {
K − 𝑆𝑇 , 𝑖𝑓 𝑆𝑇 < 𝐾 

0, 𝑖𝑓 𝑆𝑇 ≥ 𝐾 
 

where 𝐾 is the exercise price, and 𝑆𝑇 is the value of the underlying asset at time 𝑇. 

The client has the right to sell one share at time T for a price of K. The client will 

exercise the option only if the market price of equity is below the exercise price K. 
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As we don’t know the future value of the underlying asset, the value of European 

put option is given by the expected discounted value 

𝑃0
(𝑇) = 𝑒−𝑟𝑇𝐸[(𝐾 − 𝑆𝑇)+]. 

This formula involves several variables: the underlying asset price (S), the strike price 

(𝑆𝑇), the maturity time (𝑇), the volatility (σ), and the risk-free interest rate (r). Black 

and Scholes (1973) derived the value of European put option as 

𝑃0
(𝑇) = 𝐾𝑒−𝑟𝑇𝛷(−𝑑1 + 𝜎√𝑇) − 𝑆0𝛷(−𝑑1), 

where 𝑆0 is the current price of the underlying asset, 𝛷 is the cumulative distribution 

function (cdf) of the standard normal distribution, and  

𝑑1 =
ln(

𝑆0
𝐾

)+(𝑟+
𝜎2

2
)𝑇

𝜎√𝑇
. 

 

In 1996 the first catastrophe equity put option or CatEPut option was issued on 

behalf of RLI Corp., giving RLI the right to issue up to $50 million of cumulative 

convertible preferred shares (Punter, 2001). The CatEPut option gives RLI the right to 

issue convertible preferred shares at a fixed price, similar to the general call options. 

This right can only be exercised if the catastrophe cumulative loss exceeds the critical 

coverage limits during the term of the option. CatEPut option is a special case of the 

so-called double trigger option. A double trigger options depends on two random 

variables: the underlying asset price and the level of insurance loss. The payoff to the 

CatEPut option can be written as (e.g., Jaimungal and Wang, 2005) 

𝐼{𝐿𝑇−𝐿𝑡>𝐷}(𝐾 − 𝑆𝑇)+ = {
𝐾 − 𝑆𝑇 , 𝑆𝑇 < 𝐾 and 𝐿𝑇 − 𝐿𝑡 > 𝐷

0, 𝑆𝑇 ≥ 𝐾 or 𝐿𝑇 − 𝐿𝑡 ≤ 𝐷
 

where 𝑆𝑇  is the market price of the asset underlying the option, 𝐿𝑇 − 𝐿𝑡 is the 

overall claims during [𝑡, 𝑇), 𝐷 is the loss level of the trigger, and 𝐾 is the price at 

which the issuer is obliged to purchase the stock when the loss exceeds 𝐷.  
 

Motivation of Study: 

Pricing catastrophe risk derivatives is an important issue in reinsurance industry. 

In practice, many of existing pricing models assumed that catastrophe claim arrivals 

follows a homogeneous Poisson process (HPP) and applied compound Poisson 

process to aggregate the catastrophe asset loss. However, most models do not consider 

that catastrophe claim arrivals follow a non-homogeneous Poisson processes (NHPP). 

Since the loss claims often arrive in a particular trend or in cluster, therefore it is 

reasonable to assume that the catastrophe loss claims arrive according to NHPPs. 
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This thesis explores the pricing of European catastrophe put options, based on 

the risk neutral evaluation hypothesis. We apply the cumulative process for pricing 

European catastrophe put option, through various kinds of stock price jump models. 

Stock price jump models are characterized by NHPPs.  

 

Contents: 

 The rest content of this thesis are given as follows. Section 2 gives the valuation 

theory, which provides the foundation for deriving the pricing model. Section 3 

describes the double trigger model for catastrophe risk put options, including jump 

processes (NHPPs) and accumulated loss distributions. Pricing catastrophe risk put 

option is given in Section 4.  The pricing model involves the accumulated loss 

distribution, the NHPP, and the Black-Scholes model.  In order to evaluate the 

pricing model, in Section 5 we derive distributions for the size of loss claims and 

NHPPs for loss claims arrivals.  In Section 6, a real data set is applied to fit both 

distributions and NHPPs in order to calibrate parameters of the pricing model.  A 

numerical analysis is given in Section 7.  Finally, Section 8 gives the conclusions. 
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2. Valuation Theory 

Let {𝑆𝑡, 𝑡 ≥ 0} be the value of a risky underlying asset defined on a risk-neutral 

filtered probability space (Ω, 𝐹, (𝐹𝑡)𝑡≥0, 𝑃) with {𝑆𝑡, 𝑡 ≥ 0} adapted to the filtration    

(𝐹𝑡)𝑡≥0 , where 𝐹𝑡 = 𝜎{𝑆𝑢, 0 ≤ 𝑢 ≤ 𝑡}  and 𝑃  is a probability measure on  𝐹 ≡

{𝐹𝑡, 𝑡 ≥ 0}.  
 

Consider an arbitrage-free financial market. Under the risk-neutral pricing 

measure Q (or an equivalent martingale measure), the value of the contingent claim 

{𝐶𝑇 , 𝑇 > 𝑡} at time 𝑡 can be expressed by discounted expectations.  Let 𝑉𝑡 denote 

the value of the option at time t, then 

𝑉𝑡 = 𝐸𝑡
𝑄[𝐷(𝑡, 𝑇)𝐶𝑇|𝐹𝑡] 

where 𝐸𝑡
𝑄 denotes the expectation under the risk-neutral pricing measure Q, given 

𝐹𝑡. The value 𝐷(𝑡, 𝑇) = exp (− ∫ 𝑟(𝑠)𝑑𝑠
𝑇

𝑡
) is a stochastic discount factor (Cox et al., 

2004).  This formula 𝑉𝑡 can be stated as that in an arbitrate-free financial market 

there exists a stochastic process 𝐷(𝑡, 𝑇) that prices the contingent claim 𝐶𝑇 (e.g., 

see Ma and Ma, 2013). 

 

If interest rates are deterministic, the discount factor 𝐷(𝑡, 𝑇) can be extracted 

from the expectation: 

𝑉𝑡 = 𝐷(𝑡, 𝑇)𝐸𝑡
𝑄[𝐶𝑇|𝐹𝑡] 

In this case, 𝐷(𝑡, 𝑇) is the value of a T-maturity zero-coupon bond at time t. 

 

The most well-known put option is the Black-Scholes model where 𝐷(𝑡, 𝑇) =

𝑒−𝑟(𝑇−𝑡) and 𝐶𝑇 = (𝐾 − 𝑆𝑇)+. Another example is given by Cox et al. (2004) with 

𝐷(𝑡, 𝑇) = 𝑒−𝑟(𝑇−𝑡) and 𝐶𝑇 = 𝐼{𝑁𝑡≥𝑛}(𝐾 − 𝑆𝑇)+, where 𝑁𝑡  is a HPP with parameter 

𝜆, and 𝑛 is a parameter on the contract. 

 

In the presence of stochastic interest rates, a similar factorization can be obtained 

by performing a measure change to the forward-neutral measure 𝑄𝑇 (for details see, 

Jaimungal and Wang, 2005). 
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The Black-Scholes Model 

The Black-Scholes model is the most famous financial model. In the 

Black-Scholes model, the price of the underlying asset, 𝑆𝑡 , is defined on a risk-neutral 

filtered probability space (Ω, 𝐹, (𝐹𝑡)𝑡≥0, 𝑃)  and is governed by the following 

stochastic differential equation (SDE), the so-called geometric Brownian motion, 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 

where 𝜇 ≠ 0 is the mean return of the asset, σ is the volatility of return, and 𝑊𝑡 is 

a standard Brownian motion under risk-neutral probability measure.   

 

There is a unique solution for this SDE with initial value 𝑆0. Using Itô's formula 

(see Dothan, 1990), the closed form solution is given by 

𝑆𝑡 = 𝑆0exp [(𝜇 −
1

2
𝜎2) 𝑡 + 𝜎𝑊𝑡] 

where 𝑆𝑡 is the price of the underlying asset at time t. 

 

Let 𝑄 denote the new measure induced by the change of processes.  Measure 

𝑄 is equivalent to measure 𝑃 and whose Randon-Nikodym derivative is given by 

(Dothan, 1990, p.210) 

𝑑𝑄

𝑑𝑃
= exp [−

𝜇 − 𝑟

𝜎
𝑊𝑇 −

1

2
(
𝜇 − 𝑟

𝜎
)2𝑇] 

for 0 ≤ 𝑡 ≤ 𝑇. The equilibrium price measure 𝑄 exists and is finite. Define a new 

Brownian motion under Q 

𝑊𝑡̃ = 𝑊𝑡 +
𝜇 − 𝑟

𝜎
𝑡 

so that we have Q-a.s., 

𝑆𝑡 = 𝑆0 + 𝑟 ∫ 𝑆𝑢𝑑𝑢
𝑡

0

+ 𝜎 ∫ 𝑆𝑢𝑑𝑊𝑢̃

𝑡

0

,         0 ≤ 𝑡 ≤ 𝑇 

Hence we have Q-a.s  

𝑆𝑡 = 𝑆0exp [(𝑟 −
1

2
𝜎2) 𝑡 + 𝜎𝑊𝑡̃] 
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where 𝑟 is a risk-free rate. 

   

The logarithm of the underlying asset 𝑆𝑡 follows the normal distribution with 

mean (𝑟 −
1

2
𝜎2)𝑡 and variance 𝜎2𝑡: 

𝑙𝑛𝑆𝑡~𝑁 ((𝑟 −
1

2
𝜎2) 𝑡 , 𝜎2𝑡) 

The derivation of the closed form solution using the method of transformation is given 

in Appendix A. 

 

The price of a European catastrophe put option with maturity T is the expected 

discounted value 

𝑉𝑡 = 𝐸𝑡
𝑄[𝑒−𝑟𝑇(𝐾 − 𝑆𝑇)+|𝐹𝑡] 

Where {𝑒−𝑟𝑡𝑆𝑡: 𝑡 ≥ 0} is a Q-martingale. 
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3. Model Assumptions 

In this section, assumptions for the proposed pricing model are given. They are double 

trigger option, loss claims process, and accumulated loss distribution. 

 

3.1 Double Trigger Option 

A double trigger option depends on the underlying asset price and the level of 

insurance loss. It can be activated only if both conditions are satisfied. Specifically, 

 







 

DLLorKS

DLLandKSSK
SKI

tTT

tTTT

TDLL tT ,0

,
)(

 

where TS is the market price of the asset underlying the option, tT LL   is the overall 

claims during ),[ Tt , D  is the level of the loss of the trigger, and K is the price 

which the issuer is obliged to purchase the stock when the loss exceeds D .  

 

3.2 Loss Claims Process 

 If a catastrophe event occurs, any insurance company which has experienced loss 

whose share price will also show a down jump. Therefore, it is quite possible that the 

put options will be in-the-money, and reinsurance companies will be required to 

purchase shares at an unfavorable price.  It is desired to have a model that describes 

the stock value process and the dynamic changes of the loss. Cox et al. (2004) 

introduced a model for the first time to price options for catastrophe association. They 

assumed that the asset price process is dominated by geometric Brownian motion and 

jumps down a predetermined size in the event of a catastrophe event. They assumed 

that only catastrophe events would affect the price of the stock, and the size of the 

catastrophe itself is uncorrelated to the stock price. 

 

In this thesis, NHPP models are used when the occurrences of events are 

time-related. The intensity function {𝜆𝑡, 𝑡 ≥ 0} of a NHPP {𝑁𝑡, 𝑡 ≥ 0} is a function 

of time. The most well-known definition of NHPP is described as follows. 
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(1) 𝑁0(0) = 0 

(2) {𝑁𝑡, 𝑡 ≥ 0} has independent increments. 

(3) 𝑃(𝑁𝑡+ℎ − 𝑁𝑡 = 1) = 𝜆𝑡ℎ + 𝑜(ℎ) 

(4) 𝑃(𝑁𝑡+ℎ − 𝑁𝑡 ≥ 2) = 𝑜(ℎ). 

The main feature of a NHPP is that 𝑁𝑡+𝑠 − 𝑁𝑡 follows a Poisson distribution with the 

mean value function 𝑚𝑡+𝑠 − 𝑚𝑡, where 𝑚𝑡 = 𝐸[𝑁𝑡], and it can be expressed as the 

integration of the intensity function 

𝑚𝑡 = ∫ 𝜆𝑢𝑑𝑢
𝑡

0
. 

 

3.3 Accumulated Loss Distribution 

 The accumulated insured property losses 𝐿𝑡 is given by 

𝐿𝑡 = ∑ 𝑋𝑗
𝑁𝑡
𝑗=1 , 

That is, 𝐿𝑡 is characterized by a compound process with two main components: one 

characterizing the frequency (or incidence) of catastrophic events and another 

describing the severity (or size or amount) of gain or loss resulting from the 

occurrence of a catastrophic event (Klugman et al., 2008; Tse, 2009). The occurrences 

of potentially catastrophic events specified in the contract is defined in terms of an 

adapted process {𝑁𝑡, 𝑡 ≥ 0}. This adapted process is assumed to be a NHPP 

representing, for example, the number of hurricanes during [0,t). The underlying 

NHPP is described by its intensity function λt  and mean value function 𝑚𝑡 =

∫ 𝜆𝑢𝑑𝑢
𝑡

0
. The insured losses incurred by each event in the time flow 

Ttt  210 are assumed to be independently and identically distributed (iid) 

random variables {𝑋𝑗}𝑗≥1 with the distribution function 𝐺(𝑥) = 𝑃(𝑋 ≤ 𝑥) and the 

probability density function (pdf) 𝑔(𝑥) = 𝑑𝐺(𝑥)/𝑑𝑥 . Random variables 𝑁𝑡  and 

{𝑋𝑗} are assumed independent. 

 

The distribution function of 𝐿𝑡 is given by 

𝑃(𝐿𝑡 ≤ 𝑥) = ∑ 𝐺(𝑛)(𝑥)
[𝑚𝑡]𝑛

𝑛!
∞
𝑛=0 𝑒−𝑚𝑡 , 

where 𝐺(𝑛)(𝑥) = 𝑃(𝑋1 + ⋯ + 𝑋𝑛 ≤ 𝑥) is the n-fold convolution of G. It is known 

that the expectation of 𝐿𝑡 is given by 

𝐸𝐿𝑡 = 𝐸(𝑁𝑡)𝐸(𝑋𝑘) = 𝑚𝑡 ∙ 𝑤 
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where 𝜔 = 𝐸(𝑋𝑘) 

 

Let 𝑌 = inf {𝑡: 𝐿𝑡 ≥ 𝐷}  denote the time when the total number of claims 

exceeds the threshold level D for the first time. The expectation of Y is given by 

𝐸(𝑌) = ∫ 𝑃(𝑌 > 𝑡)𝑑𝑡
∞

0
= ∑ 𝐺(𝑛)∞

𝑛=0 (𝐷) ∫
[𝑚𝑡]𝑛

𝑛!
𝑒−𝑚𝑡𝑑𝑡

∞

0
, 

where we use the fact that 𝑃(𝑌 > 𝑡) = 𝑃(𝐿𝑡 < 𝐷). When {𝑁𝑡, 𝑡 ≥ 0} is a HPP with 

parameter 𝜆, the expectation of Y can be approximated by renewal theory as 

𝐸(𝑌) = ∑ 𝐺(𝑛)(𝐷)

∞

𝑛=0

∫
(𝜆𝑡)𝑛

𝑛!
𝑒−𝜆𝑡𝑑𝑡

∞

0

=
1

𝜆
∑ 𝐺(𝑛)(𝐷)

∞

𝑛=0

≈
1

𝜆
(
𝐷

𝜔
+

𝜎𝐺
2 + 𝜔2

2𝜔2
) 

where 𝜔 = 𝐸(𝑋𝑘) and 𝜎𝐺
2 = Var(𝑋𝑘). 
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4. Pricing Double Trigger Put Option 

 

In this section, the SDE and the valuation of double trigger put option are given. 

 

4.1 SDE 

The price per share S of the double trigger put option is defined by the stochastic 

equation  

















 tWLSS ttt

2
exp

2

0


  

where 0S
 
is the initial price, 𝜇  is the mean return of the asset, and 𝜎  is the 

volatility of return.
 
The factor 0  gives the percentage drop in the share value per 

unit of loss (or a measure of impact of the level of claims on the market price of the 

share value). Let }0:{ tWt  be a standard Brownian motion, and }0:{ tLt  be an 

accumulated loss process.  We assume that these two stochastic processes are 

independent.  

 

This SDE is a generalization of Black-Scholes formula in the sense that if no 

large loss claims occur during the interval ),( ttt   then the price tS  follows a 

geometric Brownian motion.  Otherwise, the price changes from tS to 

 t

y

t SeS  , 

where y is the amount of loss claimed during the interval ),( ttt   

 

Let r  be a risk-free interest rate. Let Q denote the new measure induced by the 

change of processes. Define a new Brownian motion under Q  

.
~

tt Wt
rk

W 







 

Thus, we have Q-a.s., 

   .
~

2
expexp

2

0

















 ttt WtrktLSS 


  
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Measure Q is equivalent to measure P and 



















 



 T

rk
W

rk

dP

d
T

2

2

1
exp

Q








 

The equilibrium price measure Q  exists and it is finite. The discounted relative price 

processes }0:{  tSe t

rt  is a Q-martingale. 
 

 

As argued by Cox et al. (2004) and Jaimungal and Wang (2005), the factor k  is 

chosen such that   1
 ktLP teE


. It can be shown that  

dyygy
t

m
k t )())exp(1(

0


  . 

 

4.2  Catastrophe Put Option 

Under the risk-neutral pricing measure Q, the value of double trigger put option 

depends on two contingencies, catastrophe events and option prices:  

 







 

DLLorKS

DLLandKSSK
SKI

tTT

tTTT

TDLL tT ,0

,
)(

 

where Tt 0 . 

Let tV  denote the value of the option at time t, then the value of double trigger 

put option at time t can be expressed via discounted expectations: 

  ]|)(1[ )(

tTDLL

tTrQ

tt FSKeEV
tT 

 
 

where Q

tE  denotes expectation under the risk-neutral pricing measure Q, given tF . 

The value of tV  can be obtained by conditioning on TL  and taking expectation: 

  ]|]|)[(1[ )(

tTT

Q

tDLL

tTrQ

tt FLSKEeEV
tT 

   

Thus,  






 
*

)(]]||)[([ )(

D

TtTT

Q

t

tTr

t yLdPFyLSKEeV
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The price ]|)[()( yLSKEe TT

Q

t

tTr  

 , conditionally on yLT  , is given by the usual 

Black-Scholes formula, with an initial starting price of   ktLS tt  exp , for 

*DLT  with )0,max(*

tLDD  .  Thus we have 

))(())((]|)[( 1

)(

01

)()( ydeStTydKeyLSKEe tTkytTr

TT

Q

t

tTr  



 
 

where 

tT

tTkytTr
K

S

yd

t



























))(()(
2

ln

)(

2

1  

Recall that, 

Tm

n

n

Tn

T e
n

m
ygyLdP







0

)(

!

][
)()(  

Therefore the value of the option at time t is given by 

 

dyydeStTydKeyge
n

m

FSKeE

V

D

tTky

t

tTrn

n

m
n

tT

tTDLL

tTrQ

t

t

tT

tT





















*

)( ))](())(()[(
!

][

]|)(1[

1

)(

1

)()(

0

)(

)(



 

where K is the exercise price, r is the interest rate, T is the term of the option, tT LL 

is the overall claims during ),[ Tt , )0,max(*

tLDD  , tm is the expected number of 

large claims, tS is the price of the underlying asset at time t, k is given by  

.)()1(
)(

0
dyyge

t

tm
k y




 
, 

and )(1 yd is given by 

.

))(()(
2

ln

)(

2

1
tT

tTkytTr
K

S

yd

t



























 

 

The loss trigger level D can be set as the multiple of the expected loses over the 

term of option: 
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,)(][][ tTktT mmcXENNcED 
 

where c is a constant representing the trigger ratio level. For example, if c=2 is 

chosen, the trigger level is equal to twice of the product of the expected loss per claim 

and the expected number of claims during [t,T).  

 

The factor   gives the percentage drop (or impact) in the share value per unit 

of loss. This factor is usually taken to be 0.02 (Jaimungal and Wnag., 2005). When the 

occurrence of claims has no impact on the price of the underlying asset, i.e., 0

(and consequently 0k ), the value of the option Vt becomes  

dydStTdKeyge
n

m
V

D

t

tTrn

n

m
n

tT tT

t 








 

*

)( )]()()[(
!

][
11

)()(

0

)(0   

where 

tT

tTr
K

S

d

t

























)(

2
ln

2

1  

 

The pricing model Vt contains several models as special cases. They are: 

 

Special Case 1: Model of Black and Scholes model (1973) 

When the price of the underlying asset has no jump and follows the geometric 

Brownian motion: 

𝑆𝑡 = 𝑆0exp [(𝑟 −
1

2
𝜎2) 𝑡 + 𝜎𝑊𝑡̃], 

and the pricing of put option can be expressed as the usual Black-Schloes model: 

𝑉𝑡 = 𝐾𝑒−𝑟(𝑇−𝑡)𝑁(−𝑑1 + 𝜎√𝑇 − 𝑡)−𝑆𝑡𝑁(−𝑑1). 

 

Special Case 2: Model of Cox et al. (2004) 

Define the payoff of catastrophe put option as 𝐶𝑇 = 1{𝑁𝑡≥𝑛}(𝐾 − 𝑆𝑇)+  and 

𝐷(0, 𝑇) = 𝑒−𝑟𝑇 as 

1{𝑁𝑡≥𝑛}(𝐾 − 𝑆𝑇)+ = {
𝐾 − 𝑆𝑇      𝑖𝑓 𝑆𝑇 < 𝐾 and 𝑁𝑡 ≥ 𝑛
0                 𝑖𝑓𝑆𝑇 ≥ 𝐾 or 𝑁𝑡 < 𝑛

 

The pricing formula becomes 
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𝑉𝑇 = ∑[𝐾𝑒−𝑟𝑇𝛷(𝑑𝑗) − 𝑆𝑡𝑒−𝐴𝑗+𝑘𝑇𝛷(𝑑𝑗 − 𝜎√𝑇)]𝑒−𝜆𝑇
(𝜆𝑇)𝑗

𝑗!

∞

𝑗=𝑛

 

where 𝑑𝑗 =
𝑙𝑛

𝐾

𝑆0
−𝑟𝑇+𝐴𝑗−𝑘𝑇+

𝜎2𝑇

2

𝜎√𝑇
 and A denotes the measurement of impact of level of 

claims.  

 

Special Case 3: Model of Jaimungal and Wang (2005) 

Let 𝐿𝑡 = ∑ 𝑙𝑗
𝑁𝑡
𝑗=0  denote the accumulated loss of the insured at time t, where 

{𝑁𝑡, 𝑡 ≥ 0} is the HPP claims arrival process and 𝑙𝑗 is the amount of loss per claim.  

Let 𝐷(0, 𝑇) = 𝑒−𝑟𝑇 and 𝐶𝑇 = 1{𝐿𝑇>𝐷}(𝐾 − 𝑆𝑇)+.  The pricing formula becomes 

𝑉𝑡 = ∑{∫ 𝑓(𝑗)
∞

𝐷

(𝑦)[𝐾𝑒−𝑟(𝑇−𝑡)𝛷(𝑑(𝑦)) − 𝑆0𝑒−𝛼(𝑦−𝑘𝑇)𝛷(𝑑𝑗 − 𝜎√𝑇)]𝑒−𝜆𝑇
(𝜆𝑇)𝑗

𝑗!
}

∞

𝑗=1

 

where 𝑓(𝑦) is the pdf of the loss distribution, and 𝑘 satisfies 

𝑘 =
𝜆

𝛼
∫ (1 − 𝑒−𝛼𝑦)

∞

0
𝑓(𝑦)𝑑𝑦. 
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5. Evaluation of the Pricing Model 

The pricing model derived in the previous section is given by
 

.))](())(()[(
!

][

*

)(

1

)(

1

)()(

0

)(
dyydeStTydKeyge

n

m

V

D

tTky

t

tTrn

n

m

n

tT

t

tT










  

This pricing model involves the accumulated loss distribution, the NHPP, and the 

Black-Scholes model. In order to evaluate the value of the option, we indicate in this 

section three distributions for the size of claims and three NHPPs for loss claim 

arrivals.  In next section, we use a real data set to fit both distributions and NHPPs in 

order to calibrate parameters of the pricing model.  

 

5.1 Approximation for Accumulated Loss Distribution 

The pricing model Vt involves the accumulated loss distribution, which is 

difficult to compute especially when n is large. To cope with this difficulty, some 

well-known methods for the accumulated loss distribution )()( yLPyF tL   are 

developed: the Fast Fourier Transform, simulation method, approximation method, etc. 

This thesis uses an approximation method to evaluate the accumulated loss density 

function 




 
0

)()(
)(

!

][
)()( )(

n

nm
n

tT

tL yge
n

m
yLPyf tT . 

 

The (re-)insurance industry has suffered huge losses due to catastrophe risk 

events. This brings the application of the so-called heavy-tailed distributions for large 

size of loss claims. The heavy-tailed distributions include the log-normal, the 

log-gamma, and the Weibull distributions, among others (see Mikosch, 2004, Chapter 

3). The use of gamma distribution is also popular in pricing catastrophe risk 

derivatives (Jaimungal and Wang, 2005; Ma and Ma, 2013).  

 

In general, the approximation of )(yfL  is )(yhL , which is a function that uses  

the mean ][ th LE , the variance ][2

th LVar , and even the skewness 
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3

33 / hh    and the excess kurtosis 3)/(3 4

44  hh  , where kh is the kth 

moment about h .  Following the same approach by Lee and Yu (2002) and 

references therein, we only need to set the first two moments of )(yhL
 to be equal to

)(yfL .  In this thesis, we consider gamma, log-normal, and Weibull distributions as 

the loss claims distributions. 

 

(A) The density function of a gamma distribution X with shape parameter   and 

scale parameter   is given by 








)(
),;(

/1




 xex
xg ,  .0,0,0  x  

The mean and variance of X are, respectively, 

)(XE   

2)( XVar  

The accumulated gamma loss distribution )(yfL  can be approximated by )(yhL , 

which is a gamma distribution with mean h  
and variance 

2

h  
given by, 

respectively, 

  )(][)]([)( tmXEtNELE th  

).()(][)]([)( 22222   tmXEtNELVar th  

 

(B) The density function of a log-normal distribution X with location parameter   

and scale parameter   is given by 








 


2

2

2

)(ln
exp

2

1
),;(








x

x
xg , .,0,0  x  

The mean and variance of X are, respectively, 











2
exp)(

2
XE  

   .2exp22exp)( 22  XVar  
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The accumulated log-normal loss distribution )(yfL  can be approximated by

)(yhL
, which is a log-normal distribution with mean h  

and variance 
2

h  
given by, 

respectively, 

)exp()(][)]([)( 2

2

1  tmXEtNELE th  

)22exp()(][)]([)( 222   tmXEtNELVar th  

 

(C) The density function of a Weibull distribution X with shape parameter   and 

scale parameter   is given by 
































 






xx
xg exp),;(

1

,  0,0,0  x  

The mean and variance of X are, respectively, 













1

1)(XE  
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1

1
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











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







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





XVar  

Following the same approach for the log-normal distribution, the accumulated 

Weibull loss distribution )(yfL  is approximated by )(yhL , which is a Weibull 

distribution with mean h  
and variance 

2

h  
given by , respectively, 













1

1)(][)]([)( tmXEtNELE th  
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
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



 tmXEtNELVar th  
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5.2 Non-homogeneous Poisson Process 

NHPP is more appropriate than HPP when events are more likely to occur at 

certain times than at the other times. Since the loss claims can arrive in cluster, thus it 

may be suitable to assume that the catastrophe loss claims arrive according to a NHPP. 

 

One important feature of NHPP is the property of independent increments. One 

well-known method for constructing NHPP is to solve the following differential 

equation: 

)]()()[(
)(

tmtatb
dt

tdm
  

where m(t) is the expected number of loss claims occurred by time t, a(t) is the total 

number of observed loss claims by time t, and b(t) is the occurrence rate per claim at 

time t. Three NHPP models are given in Table 1. They are the Goel-Okumoto model, 

the delayed S-shaped model, and the inflection S-shaped model (Lyu, 1996). 

 

 

 

 

Model Name 𝑚(𝑡) 𝜆(𝑡) 

 

Goel-Okumoto 

 

 

𝑚(𝑡) = 𝑎(1 − 𝑒−𝑏𝑡) 

𝑎(𝑡) = 𝑎 

𝑏(𝑡) = 𝑏 

𝜆(𝑡) = 𝑎𝑏𝑒−𝑏𝑡 

 

Inflection S-shaped 

 

 

𝑚(𝑡) =
𝑎(1 − 𝑒−𝑏𝑡)

1 + 𝛽𝑒−𝑏𝑡
 

𝑎(𝑡) = 𝑎 

𝑏(𝑡) =
𝑏

1 + 𝛽𝑒−𝑏𝑡
 

𝜆(𝑡) =
𝑎𝑏𝑒−𝑏𝑡(1 + 𝛽)

(1 + 𝛽𝑒−𝑏𝑡)2
 

 

Delay S-shaped 

 

 

𝑚(𝑡) = 𝑎[1 − (1 + 𝑏𝑡)𝑒−𝑏𝑡] 

𝑎(𝑡) = 𝑎 

𝑏(𝑡) =
𝑏2𝑡

1 + 𝑏𝑡
 

𝜆(𝑡) = 𝑎𝑏2𝑡𝑒−𝑏𝑡 

Table 1. NHPP models. 
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6. Parameters Calibration 
 

To estimate and calibrate the parameters of the pricing model, we need to fit )(yhL
, 

the approximated density function of accumulated loss distribution, and tN , the loss 

claims process. 

 

6.1 Data Set 

The generic data set of Munich Re’s NatCatSERVICE is a database for evaluating 

and analyzing natural catastrophes. The institution has recorded the loss data from all 

over the world since 1980. It only records events whose losses are over a 

predetermined threshold. The database provides the information that could be applied 

for assessing the risk. The insurance loss and total loss of natural catastrophe events 

are listed individually in each form. For example, ten costliest Hurricanes in the US 

1980-2015 are shown in Table 2. 

 

 

Time Event Overall Losses 

in US$ m 

Insured Losses 

in US$ m 

Aug, 2005 Hurricane Katrina 125000 60500 

Nov, 2012 Hurricane Sandy 68500 29500 

Sep, 2008 Hurricane Ike 38000 18500 

Aug, 1992 Hurricane Andrew 26500 17000 

Sep, 2004 Hurricane Ivan 23000 11800 

Oct, 2005 Hurricane Wilma 22000 12500 

Aug, 2004 Hurricane Charley 18000 8000 

Sep, 2005 Hurricane Rita 16000 8600 

Sep, 1998 Hurricane Georges 13300 4300 

Sep, 2004 Hurricane Frances 12000 5500 

Table 2. Ten Costliest Hurricanes in United States 1980-2015. 

 

To validate the pricing model, we apply the data set used by Ma and Ma (2013).  

This data set is a part of the Property Claim Service (PCS) loss data for catastrophe 

events occurred in the US from 1985 to 2010. The amount of losses is transformed to 

2010 dollars using the Consumer Price Index (CPI) to adjust for inflation. The 
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adjusted PCS loss data between 1985 and 2010 is shown in Figure 2. The cumulative 

number of catastrophe events in the US between 1985 and 2010 is given in Figure 3.   

 

 

Figure 2. The PCS loss (billion dollars). 

 

 

 

 

Figure 3. Cumulative number of CATs. 
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6.2 Estimation of Accumulated Loss Distribution 

Three loss claims distributions are the gamma, the log-normal, and the Weibull 

distributions. Parameters of the distribution functions are estimated by maximum 

likelihood estimation (MLE). The results of the parameter estimation are given in 

Table 3.  

 

The accumulated loss distribution is one part of the pricing model, and it affects 

the option prices. To evaluate the effectiveness of fitting performance, a set of 

comparison criteria is employed to compare chosen distributions quantitatively. The 

comparison criteria we used are AD statistic and AIC. 

 

Table 3 shows that all three distributions pass the AD statistic test at 5% level of 

significance. The log-normal with parameters 382.2  and 8844.0 , and the 

gamma distributions with parameters 529.1a  and 16.10b have lower AD values, 

we thus use both distributions as accumulated loss amount for numerical analysis in 

next section. Also, Table 3 shows AIC values of all distributions. 

 

 (A)  Anderson-Darling (AD) statistic: The AD test is a form of minimum distance 

estimate, which is designed to detect the difference in the tails between the data and 

the fitted distribution. The AD statistic is defined by 

  .))(1ln()(ln)12(
1

AD
1

1 nXFXFi
n

n

i

ini  


  

If the test statistic AD is greater than the corresponding critical value C (at  level 

of significance), we reject the data follow the predetermined distribution. 

 

(B)  Akaike information criterion (AIC): AIC is computed as follows (Konish and 

Kitagawa, 2008): 

AIC =−2ln(L)+2k, 

where k is the number of parameters in the model, and L is the maximized value of the 

likelihood function for the estimated model. AIC takes the degrees of freedom into 

consideration by assigning a model with more parameters a larger penalty. Given a 

data set, several competing models may be ranked according to their AIC, with the 

one having the lowest AIC being the best. 
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Distribution Log-normal gamma Weibull 

Parameters 382.2  

8844.0  

529.1a  

16.10b  

206.1  

65.16  

AD ( )5018.205.0 C  
0.161 0.315 0.373 

AIC 214.1464 198.7547 199.8861 

Table 3. Parameter estimates for accumulated loss distributions. 

 

6.3 Estimation of Loss Claims Process 

Parameters of the loss claims process are estimated by the least square errors (for 

the Inflection S-shaped model only) and the maximum likelihood procedure. From 

Table 4, the Goel-Okumoto model with parameters 2935a  and 3100286.8 b , 

and the Delayed S-shaped model with parameters 982a  and 1137.0b  have 

lower values of AIC. Thus we use the Goel-Okumoto and the Delayed S-shaped 

models for loss claims processes. 

 

NHPP Processes Inflection S-shaped  Delayed S-shaped Goel-Okumoto 

Parameters 1101a  

5107.445 b  

310668.1   

982a  

1137.0b  

1404a  
3100286.8 b  

AIC 5630 258 169 

Table 4. Parameter estimates for loss claims processes 

 

Note that parameter a is the expected number of events that initially exist in the 

flow of occurrences, and parameter b is the occurrence rate per event. For the 

Inflection S-shaped model, parameter β is equal to (1−r)/r where r is the inflection 

factor (Lyu, 1996). 
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7. Numerical Analysis for the Pricing Model  

In this section, the pricing model tV  is analyzed. We will discuss influences of 

the choice of the pricing model parameters. Recall that the pricing model is given by 
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t
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For the accumulated loss distributions, we consider the log-normal distribution 

with parameters 382.2 and 8844.0 , and the gamma distributions with 

parameters 529.1a  and 16.10b . For the NHPP loss claims arrivals, we consider 

the Goel-Okumoto model with parameters 1404a  and 3100286.8 b , and the 

Delayed S-shaped model with parameters 982a  and 1137.0b .   

 

We assume that the maturity time ]5,1[T  years, because an option usually has 

1 to 5 year term. The loss trigger level D is assumed to be the multiple of the expected 

losses: 

][ TLcED 
 

where c is a constant representing the trigger ratio level. For example, if c=1 is chosen, 

the trigger level is equal to the product of the expected loss per claim and the expected 

number of claims during [0,T]. We assume that the trigger ratio level is c=1. 

 

The factor   gives the percentage drop in the share value per unit of loss, and 

the factor k  is chosen such that  

dyygy
t

m
k t )())exp(1(

0


  . 

The value of factor k is determined by the value of factor  . The following table 

shows values of k  for maturity time ]5,1[T  when value of  is specified under 

the Goel-Okumoto NHPP and the gamma loss assumptions.   
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 T=1 T=2 T=3 T=4 T=5 

0  0 0 0 0 0 

001.0  0.015477 0.015415 0.015353 0.015292 0.015231 

01.0  0.149781 0.149182 0.148586 0.147994 0.147404 

02.0  0.289401 0.288244 0.287093 0.285948 0.284809 

05.0  0.658817 0.656183 0.653563 0.650957 0.648365 

1.0  1.155368 1.150748 1.146154 1.141583 1.137037 

5.0  3.166444 3.153783 3.141191 3.128665 3.116206 

Table 5. Values of k for different drop percentage   and maturity time T 

(year) using Goel-Okumoto NHPP and gamma loss. 

 

Parameters are set by: exercise price K=80; interest rate, r=0.05; volatility,

2.0 ; percentage drop, 02.0 ; maturity time, ]5,1[T  years; price of the 

underlying asset, ]110,0[S . We now calculate the option price for various models. 

 

Figure 4 shows the catastrophe risk option price with respect to the price of asset 

and maturity time under Goel-Okumoto NHPP and gamma loss assumptions. Figure 5 

shows the catastrophe risk option price with respect to the price of underlying asset 

and maturity time under Goel-Okumoto NHPP and log-normal loss assumptions.  

Both figures show that the option prices decrease as the price of asset increases, and 

increase as the time to maturity increases (for asset prices S larger than 60).  For 

small asset prices ( 60S ), the option prices have maximum values around maturity 

2T  or 3T . 

 

Figure 6 shows the catastrophe risk option price with respect to the price of asset 

and maturity time under Delay S-shaped NHPP and gamma loss assumptions. The 

option prices decrease as the price of asset increases, and increase as the time to 

maturity increases (for asset prices S larger than 60).  For small asset prices ( 60S ), 

the option prices have maximum values around maturity 1T . 

 

Figure 7 shows the catastrophe risk option price with respect to the price of 

underlying asset and maturity time under Delay S-shaped NHPP and log-normal loss 

assumptions.  The option prices decrease as the price of asset increases, and increase 

then decrease as the time to maturity increases.  For a fixed asset price, the option 

prices reach their maximum values around maturity 4T . 
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Figure 4. Catastrophe option price with Goel-Okumoto NHPP and gamma loss 

for c=1, K=80, r=0.05, 2.0 , 02.0 . 

 

 

 
Figure 5. Catastrophe option price with Goel-Okumoto NHPP and 

log-normal loss for c=1, K=80, r=0.05, 2.0 , 02.0 . 
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Figure 6. Catastrophe option price with Delay S-shaped NHPP and gamma 

loss for c=1, K=80, r=0.05, 2.0 , 02.0 . 

 

 

    

Figure 7. Catastrophe option price with Delay S-shaped NHPP and 

log-normal loss for c=1, K=80, r=0.05, 2.0 , 02.0 . 
 

 

Figure 8 to Figure 13 show the price difference between trigger ratio level 

( 4/1c and 1c ), percentage drop ( 02.0  and 0 ), loss distributions 

(gamma and log-normal), and NHPPs (Goel-Okumoto and Delay S-shaped). 

 

Figure 8 shows the price difference between threshold trigger ratios 4/1c  and 

1c  under Goel-Okumoto NHPP and gamma loss assumptions.  We observe that 

trigger ratio level 4/1c  overestimates the option prices. The option prices for a 
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small trigger ratio level ( 4/1c ) are higher than that for a large trigger ratio level 

( 1c ). The price difference increases sharply when the asset price is small. The 

significant price differences show that the trigger ratio level is an important factor and 

should be taken into account when pricing catastrophe risk option. 

 

Figure 9 shows the price difference between percentage drop 02.0  and 

0  under Goel-Okumoto NHPP and gamma loss assumptions. The option prices 

for 02.0 are higher than those for 0 . The difference increase as the maturity 

time increases.  For a fixed maturity time, the difference has a unimodal shape along 

the asset price S and reach its maximum value around 60S .  The price differences 

indicate that loss claims affect the option prices substantially.  The option prices will 

increase (decrease) if the percentage drop   increases (decreases).  Thus the 

percentage drop is an important factor and need to be taken much care. 

 

Figures 10 and 11 show how the choice of loss claims distribution affect the 

option prices.  Figure 10 illustrates the price difference between gamma and 

log-normal distributions under Goel-Okumoto NHPP assumption. The differences of 

the option prices vary from -0.767 to 4.822 dollars.  Figure 11 illustrates the price 

difference between gamma and log-normal distributions under Delay S-shaped NHPP 

assumption. The differences of the option prices vary from -21.83 to 44.54 dollars. 

Both figures show that for small asset price (Goel-Okumoto: 70S ; Delay S-shaped: 

40S ) the gamma loss distribution has higher option prices, while for large asset 

price the log-normal loss distribution has higher option price.   

 

Figures 12 and 13 show how the choice of NHPP affect the option prices.  

Figure 12 illustrates the price difference between Goel-Okumoto and Delay S-shaped 

NHPPs under gamma loss assumption.  The differences of the option prices vary 

from 0.0406 to 39.72 dollars. Figure 13 illustrates the price difference between 

Goel-Okumoto and Delay S-shaped NHPPs under log-normal loss assumption.  The 

differences of the option prices vary from -21.577 to 0 dollars. Two NHPPs have 

opposite results under different distributions. The Goel-Okumoto NHPP overestimates 

the option prices under gamma loss assumption, while the Delay S-shaped NHPP 

overestimates the option prices under log-normal loss assumption.  It is therefore 

need to pay attentions to select a suitable NHPP when pricing catastrophe risk option. 
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Figure 8. The price difference between threshold trigger ratios c=1/4 and c=1 

under Goel-Okumoto NHPP and gamma loss assumptions. 

 

 

 

 

 
Figure 9. The price difference between 02.0  and 0  under 

Goel-Okumoto NHPP and gamma loss assumptions. 
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Figure 10. The price difference between gamma and log-normal loss 

distributions under Goel-Okumoto NHPP assumption. 

 

 

 

 

 

Figure 11. The price difference between gamma and log-normal loss 

distributions under Delay S-shaped NHPP assumption. 
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Figure 12. The price difference between Goel-Okumoto and Delay S-shaped 

NHPPs under gamma loss assumption. 

 

 

 

 

Figure 13. The price difference between Goel-Okumoto and Delay S-shaped 

NHPPs under log-normal loss assumption. 
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8. Conclusions  

 

This thesis develops a model to price the catastrophe risk put option. The pricing 

model is developed by a double trigger put option, which depends on the underlying 

asset price and the cumulative level of insurance loss. We apply the valuation theory 

to derive the pricing model. Under the risk-neutral pricing measure, the value of 

double trigger put option is expressed via a discounted expectation, and the closed 

form of the pricing model is provided.  This pricing model involves the accumulated 

loss distribution, the loss claims arrival process, and the Black-Scholes model. The 

accumulated loss distribution is characterized by a compound distribution and is 

approximated by heavy-tailed distributions.  The loss claims arrivals process is 

assumed to be a non-homogeneous Poisson jump process.   

 

We apply a real data set to fit both accumulated loss distributions and NHPP 

arrivals in order to calibrate parameters of the proposed pricing model.  The 

numerical results show that trigger ratio level, percentage drop, loss distributions, and 

NHPPs have important influences for the pricing model.  By comparing different 

trigger ratio levels, we observed that a small trigger ratio level has higher option 

prices than those of a large trigger ratio level.  As the percentage drop   increase, 

the option price also increases. For the choice of loss distributions, the numerical 

results show that for small asset price S the gamma loss distribution has higher option 

prices.  While for large asset price S the log-normal loss distribution has higher 

option prices. As for the choice of NHPPs, we validate that the Goel-Okumoto NHPP 

overestimates the option prices under gamma loss assumption, and the Delay 

S-shaped NHPP overestimates the option prices under the log-normal loss 

assumption. 
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Appendix A: Black-Scholes Model 

It is well known that the process of price movement of derivatives can be derived 

from Ito’s lemma, which was discovered by Ito in the1950s. The Ito’s Lemma assume 

that the random variable x can be derived from Ito process 

𝑑𝑥 = 𝑎(𝑥, 𝑡)𝑑𝑡 + 𝑏(𝑥, 𝑡)𝑑𝑊 

where both a and b are the functions of x and t,  𝑑𝑊 is a Weiner process. Let x be the 

price of derivative. A function f of x and t can be expressed as 

𝑑𝑓(𝑥, 𝑡) = (
𝜕𝑓

𝜕𝑥
𝑎 +

𝜕𝑓

𝜕𝑡
+

1

2

𝜕2𝑓

𝜕𝑥2
𝑏2) 𝑑𝑡 +

𝜕𝑓

𝜕𝑥
𝑏𝑑𝑊 

 

 In the following, the Black-Scholes formula is derived from statistical point of 

view. Let  

𝑆𝑇:  stock price at maturity time T  

 0S :  stock price at time 0 

𝜇 :  asset return 

𝜎 :  volatility. 

Assume that  

(1) The stock price follows log-normal distribution. 

𝑙𝑛𝑆𝑇~𝑁 (𝑙𝑛𝑆0 + (𝜇 −
𝜎2

2
) 𝑇 , 𝜎2𝑇) 

Since 𝑙𝑛𝑆𝑇 is normally distributed, such that 𝑆𝑇 has a log-normal distribution.  

(2) The short selling of securities with full use of proceeds is permitted. 

(3) There are no dividends during the life of derivative. 

(4) There are no transactions costs or taxes. All securities are perfectly divisible. 

(5) There are no riskless arbitrage opportunities. 

(6) Security trading is continuous. 

(7) The risk-free rate of interest, r, is constant and the same for all maturities. 

 

Pricing European call and put options 

 

𝑐 = 𝑆0𝑁(𝑑1) − 𝐾𝑒−𝑟𝑇𝑁(𝑑2) 

𝑝 = 𝐾𝑒−𝑟𝑇𝑁(−𝑑2) − 𝑆0𝑁(−𝑑1) 
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𝑑1 =
𝑙𝑛(

𝑆0

𝐾
) + (𝑟 +

𝜎2

2
)𝑇

𝜎√𝑇
 

𝑑2 =
𝑙𝑛(

𝑆0

𝐾
) + (𝑟 −

𝜎2

2
)𝑇

𝜎√𝑇
= 𝑑1 − 𝜎√𝑇 

The variables, 𝑐 and 𝑝, are the price of European call and put options, 𝑆0 is current 

stock price, 𝑟 is the continuously compound risk-free rate, 𝜎 is the volatility of 

stock price, and 𝑇 is the time to the maturity of the option. 

Proof. 

Consider a European call option. The expected value of the option at maturity in 

a risk-neutral world is 

𝐸̂[𝑚𝑎𝑥 (𝑆𝑇 − 𝐾 , 0)] 

where Ê denotes the expected value in a risk-neutral world. Assume that the expected 

return from the underlying asset is the risk-free interest rate, r (i.e., assume 𝜇 = 𝑟). 

 

Define 𝑦 ≡ 𝑙𝑛 𝑆𝑇 , and y follows normal distribution. In a risk-neutral world,  

𝑦 = 𝑙𝑛𝑆𝑇~𝑁(𝑙𝑛𝑆0 + (𝑟 −
𝜎2

2
) 𝑇 , 𝜎2𝑇) 

Let  𝑚 = 𝑙𝑛𝑆0 + (𝑟 −
𝜎2

2
) 𝑇  ,   𝑠2 = 𝜎2𝑇  and 𝑓(𝑆𝑇)  be the probability density 

function of 𝑆𝑇.  

𝐸̂[max(𝑆𝑇 − 𝐾 , 0)] = ∫ max(𝑆𝑇 − 𝐾 , 0)
∞

0

𝑓(𝑆𝑇)𝑑𝑆𝑇 = ∫ (𝑆𝑇 − 𝐾)
∞

𝐾

𝑓(𝑆𝑇)𝑑𝑆𝑇     

= ∫ 𝑒𝑦
∞

𝑙𝑛𝐾

1

√2𝜋𝑠2
exp (−

1

2
(

𝑦 − 𝑚

𝑠
)

2

) 𝑑𝑦 − ∫ 𝐾
∞

𝑙𝑛𝐾

1

√2𝜋𝑠2
𝑒𝑥𝑝 (−

1

2
(

𝑦 − 𝑚

𝑠
)

2

) 𝑑𝑦

= ∫
1

√2𝜋𝑠2

∞

𝑙𝑛𝐾

exp (−
1

2𝑠2
(𝑦2 − 2𝑚𝑦 + 𝑚2 − 2𝑦𝑠2)) 𝑑𝑦

− 𝐾 ∫
1

√2𝜋𝑠2
exp (−

1

2
(

𝑦 − 𝑚

𝑠
)

2

) 𝑑
∞

𝑙𝑛𝐾
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                                = ∫
1

√2𝜋𝑠2

∞

𝑙𝑛𝐾

exp (−
1

2𝑠2
[(𝑦 − 𝑚 − 𝑠2)2 + 𝑚2 − (𝑚 + 𝑠2)2]) 𝑑𝑦

− 𝐾 ∫
1

√2𝜋𝑠2

∞

𝑙𝑛𝐾−𝑚

𝑠

exp (−
1

2
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𝑦 − 𝑚

𝑠
)

2

) 𝑑 (
𝑦 − 𝑚

𝑠
)

= ∫
1

√2𝜋𝑠2

∞

𝑙𝑛𝐾−𝑚−𝑠2
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exp [−
1

2
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𝑦 − 𝑚 − 𝑠
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2

−
1

2𝑠2
(−2𝑚𝑠2 − 𝑠4)] 𝑑 (

𝑦 − 𝑚 − 𝑠2

𝑠
) 

− 𝐾 [1 − 𝑁 (
𝑙𝑛𝐾 − 𝑚

𝑠
)] = 𝑒𝑚+

1

2
𝑠2

𝑁 (
𝑚 + 𝑠2 − 𝑙𝑛𝐾

𝑠
) − 𝐾 × 𝑁 (

𝑚 − 𝑙𝑛𝐾

𝑠
) 

 

𝑑1 =
𝑚 + 𝑠2 − 𝑙𝑛𝐾

𝑠
=

𝑙𝑛𝑆0 + (𝑟 −
1

2
𝜎2) 𝑇 + 𝜎2𝑇 − 𝑙𝑛𝐾

𝜎√𝑇
=

𝑙𝑛 (
𝑆0

𝐾
) + (𝑟 +

1

2
𝜎2)𝑇

𝜎√𝑇
 

𝑑2 =
𝑚 − 𝑙𝑛𝐾

𝑠
=

𝑚−𝑙𝑛𝐾 + 𝑠2

𝑠
− 𝑠 = 𝑑1 − 𝜎√𝑇 

𝑒𝑚+
1

2
𝑠2

= exp [𝑙𝑛𝑆0 + (𝑟 −
1

2
𝜎2) 𝑇 +

1

2
𝜎2𝑇] = 𝑆0𝑒𝑟𝑇 

Therefore, 𝐸̂[max(𝑆𝑇 − 𝐾 , 0)] = 𝑆0𝑒𝑟𝑇𝑁(𝑑1) − 𝐾𝑁(𝑑2) and the price of European 

call option  

𝑐 = 𝐸̂[max(𝑆𝑇 − 𝐾 , 0)]𝑒−𝑟𝑇 = 𝑆0𝑁(𝑑1) − 𝐾𝑒−𝑟𝑇𝑁(𝑑2) 

Similarly, the price of European put option 

𝑝 = 𝐸̂[max(𝐾 − 𝑆𝑇 , 0)]𝑒−𝑟𝑇 = 𝐾𝑒−𝑟𝑇𝑁(−𝑑2) − 𝑆0𝑁(−𝑑1) 
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